零、简介
事务有4种特性:原子性、一致性、隔离性和持久性。那么事务的四种特性到底是基于什么机制实现呢?
- 事务的隔离性由
锁机制
实现。 - 而事务的原子性、一致性和持久性由事务的 redo 日志和undo 日志来保证。
- REDO LOG 称为
重做日志
,提供再写入操作,恢复提交事务修改的页操作,用来保证事务的持久性。 - UNDO LOG 称为
回滚日志
,回滚行记录到某个特定版本,用来保证事务的原子性、一致性。
- REDO LOG 称为
有的DBA或许会认为 UNDO 是 REDO 的逆过程,其实不然。其实不然。REDO和UNDO都可以视为是一种恢厦操作
-
redo log:是存储引擎层(innodb)生成的日志,记录的是"
物理级别
"上的页修改操作,比如页号xx、偏移量ywy写入了’zzz’数据。主要为了保证数据的可靠性;提交,由redo log来保证事务的持久化。
-
undo log:是存储引擎层(innodb)生成的日志,记录的是
逻辑操作
日志,比如对某一行数据进行了INSERT语句操作,那么undo log就记录一条与之相反的DELETE操作。主要用于事务的回滚
(undo log 记录的是每个修改操作的逆操作
)和一致性非锁定读
(undo log回滚行记录到某种特定的版本—MVCC,即多版本并发控制)。
一. redo日志
InnoDB存储引擎是以页为单位
来管理存储空间的。在真正访问页面之前需要把在磁盘上
的页缓存到内存中的Buffer Pool
之后才可以访问。所有的变更都必须先更新缓冲池中
的数据,然后缓冲池中的脏页
会以一定的频率被刷入磁盘( checkPoint
机制),通过缓冲池来优化CPU和磁盘之间的鸿沟,这样就可以保证整体的性能不会下降太快。
1.1 为什么需要REDO日志
(redo日志保证持久性,将数据存入磁盘)
一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然而由于checkpoint 并不是每次变更的时候就触发
的,而是master线程隔一段时间去处理的。所以最坏的情况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。
另一方面,事务包含 持久性
的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩溃,这个事务对数据库中所做的更改也不能丢失。
那么如何保证这个持久性呢? 一个简单的做法
:在事务提交完成之前把该事务所修改的所有页面都刷新到磁盘,但是这个简单粗暴的做法有些问题:
-
修改量与刷新磁盘工作量严重不成比例
有时候我们仅仅修改了某个页面中的一个字节,但是我们知道在InnoDB中是以页为单位来进行磁盘lo的,也就是说我们在该事务提交时不得不将一个完整的页面从内存中刷新到磁盘,我们又知道一个页面默认是16KB大小,只修改一个字节就要刷新16KB的数据到磁盘上显然是太小题大做了。
-
随机lo刷新较慢
一个事务可能包含很多语句,即使是一条语句也可能修改许多页面,假如该事务修改的这些页面可能并不相邻,这就意味着在将某个事务修改的Buffer Pool中的页面
刷新到磁盘
时需要进行很多的随机IO
,随机Io比顺序IO要慢,尤其对于传统的机械硬盘来说。
另一个解决的思路
:我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内存中修改过的全部页面刷新到磁盘,只需要把 修改
了哪些东西 记录一下
就好。比如,某个事务将系统表空间中 第10号
页面中偏移量为 100
处的那个字节的值 1
改成 2
。我们只需要记录一下:将第0号表空间的10号页面的偏移量为100处的值更新为 2 。
InnoDB引擎的事务采用了WAL技术(Write-Ahead Logging
),这种技术的思想就是先写日志,再写磁盘,只有日志写入成功,才算事务提交成功,这里的日志就是redo log。当发生宕机且数据未刷到磁盘的时候,可以通过redo log来恢复,保证ACID中的D,这就是redo log的作用。
1.2 REDO日志的好处、特点
1. 好处
- redo日志降低了刷盘频率
- redo日志占用的空间非常显
- 存储表空间ID、页号、偏移量以及需要更新的值,所需的存储空间是很小的,刷盘快。
2. 特点
-
redo日志是顺序写入磁盘的
在执行事务的过程中,每执行一条语句,就可能产生若干条redo日志,这些日志是按照产生的
顺序写入磁盘
的,也就是使用顺序Io,效率比随机Io快。 -
事务执行过程中,redo log不断记录
redo log跟bin log的区别,redo log是
存储引擎层
产生的,而bin log是数据阵层
广生的。假设一个事务,对表做10万行的记录插入,在这个过程中,一直不断的往redo log顺序记录,而bin log不会记录,直到这个事务提交,才会一次写入到bin log文件中。
1.3 redo的组成
Redo log可以简单分为以下两个部分:
重做日志的缓冲 (redo log buffer)
,保存在内存中,是易失的。
在服务器启动时就向操作系统申请了一大片称之为redo log buffer的连续内存
空间,翻译成中文就是redo日志缓冲区。这片内存空间被划分成若干个连续的redo log block
。一个redo log block占用512字节
大小。
重做日志文件(redologfile)
,保存在硬盘中,是持久的。
REDO日志文件如图所示,其中的ib_logfile0
和ib_logfile1
即为redo log日志。
1.4 redo的整体流程
以一个更新事务为例,redo log 流转过程,如下图所示:
第1步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝
第2步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值
第3步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加 写的方式
第4步:定期将内存中修改的数据刷新到磁盘中
1.5 redo log的刷盘策略
redo log的写入并不是直接写入磁盘的,InnoDB引擎会在写redo log的时候先写redo log buffer,之后以 一 定的频率 刷入到真正的redo log file 中。这里的一定频率怎么看待呢?这就是我们要说的刷盘策略。
注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存 (page cache)中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。
针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit 参数,该参数控制 commit提交事务
时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:
-
设置为0 :表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日志的同步)
-
设置为1 :表示每次事务提交时都将进行同步,刷盘操作( 默认值 )
-
设置为2 :表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自己决定什么时候同步到磁盘文件。
总的来说
- 0 最快最不安全
- 1最慢 但最安全
- 2 折中。
1.6 redo log小结
InnoDB的更新操作采用的是Write Ahead Log(预先日志持久化)策略,即先写日志,再写入磁盘。
二、undo日志
redo log是事务持久性的保证,undo log是事务原子性的保证。在事务中 更新数据
的 前置操作
其实是要先写入一个 undo log
。
2.1 如何理解Undo日志
事务需要保证 原子性
,也就是事务中的操作要么全部完成,要么什么也不做。但有时候事务执行到一半会出现一些情况,比如:
- 情况一:事务执行过程中可能遇到各种错误,比如
服务器本身的错误
,操作系统错误
,甚至是突然断电
导的错误。 - 情况二:程序员可以在事务执行过程中手动输入
ROLLBACK
语句结束当前事务的执行。
那以上情况出现,我们需要把数据改回原先的样子,这个过程称之为 回滚
,这样就可以造成一个假象:这个事务看起来什么都没做,所以符合 原子性
要求。
每当我们要对一条记录做改动时(这里的改动
可以指INSERT
、DELETE
、UPDATE
),都需要"留一手"——把回滚时所需的东西记下来。比如:
-
你
插入一条记录时
,至少要把这条记录的主键值记下来,之后回滚的时候只需要把这个主键值对应的记录删掉
就好了。(对于每个INSERT, InnoDB存储引擎会完成一个DELETE) -
你
删除了一条记录
,至少要把这条记录中的内容都记下来,这样之后回滚时再把由这些内容组成的记录插入到表中就好了。(对于每个DELETE,InnoDB存储引擎会执行一个INSERT) -
你
修改了一条记录
,至少要把修改这条记录前的旧值都记录下来,这样之后回滚时再把这条记录更新为旧值
就好了。(对于每个UPDATE,InnoDB存储引擎会执行一个相反的UPDATE,将修改前的行放回去)
MySQL把这些为了回滚而记录的这些内容称之为撤销日志
或者回滚日志(
即undo log
)。注意,由于查询操作( SELECT
)并不会修改任何用户记录,所以在杳询操作行时,并不需要记录相应的undo日志
此外,undo log 会产生redo log
,也就是undo log的产生会伴随着redo log的产生,这是因为undo log也需要持久性的保护
2.2 Undo日志的作用
- 作用1:回滚数据
用户对undo日志可能有误解
: undo用于将数据库物理地恢复到执行语句或事务之前的样子。但事实并非如此。undo是逻辑日志
,因此只是将数据库逻辑地恢复到原来的样子。所有修改都被逻辑地取消了,但是数据结构和页本身在回滚之后可能大不相同。
这是因为在多用户并发系统中,可能会有数十、数百甚至数千个并发事务。数据库的主要任务就是协调对数据记录的并发访问。比如,一个事务在修改当前一个页中某几条记录,同时还有别的事务在对同一个页中另几条记录进行修改。因此,不能将一个页回滚到事务开始的样子,因为这样会影响其他事务正在进行的工作。
- 作用2:MVCC
undo的另一个作用是MVCC,即在InnoDB存储引擎中MVCC的实现是通过undo来完成。当用户读取一行记录时,若该记录已经被其他事务占用,当前事务可以通过undo读取之前的行版本信息,以此实现非锁定读取。
2.3 undo的存储结构
-
回滚段与undo页
-
回滚段与事务
- 每个事务只会使用一个回滚段,一个回滚段在同一时刻可能会服务于多个事务。
- 当一个事务开始的时候,会制定一个回滚段,在事务进行的过程中,当数据被修改时,原始的数据会被复制到回滚段。
- 在回滚段中,事务会不断填充盘区,直到事务结束或所有的空间被用完。如果当前的盘区不够用,事务会在段中请求扩展下一个盘区,如果所有已分配的盘区都被用完,事务会覆盖最初的盘区或者在回滚段允许的情况下扩展新的盘区来使用。
- 回滚段存在于undo表空间中,在数据库中可以存在多个undo表空间,但同一时刻只能使用一个undo表空间。
- 当事务提交时,InnoDB存储引擎会做以下两件事情:
将undo log放入列表中,以供之后的purge操作。
判断undo log所在的页是否可以重用,若可以分配给下个事务使用。
-
回滚段中的数据分类
- 未提交的回滚数据(uncommitted undo information)
- 已经提交但未过期的回滚数据(committed undo information)
- 事务已经提交并过期的数据(expired undo information)
2.4 undo的类型
在InnoDB存储引擎中,undo log分为:
- insert undo log
insert undo log是指在insert操作中产生的undo log。因为insert操作的记录,只对事务本身可见,对其他事务不可见(这是事务隔离性的要求),故该undo log可以在事务提交后直接删除。不需要进行purge操作。
- update undo log
update undo log记录的是对delete和update操作产生的undo log。该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。
2.5 undo log的生命周期
- 简要生成过程
以下是undo+redo事务的简化过程
假设有2个数值,分别为A=1和B=2,然后将A修改为3,B修改为4
1. start transaction;
2.记录A=1到undo log;
3. update A = 3;
4.记录A=3 到redo log;
5.记录 B=2到undo loq;
6. update B = 4;
7.记录B = 4到redo log;
8.将redo log刷新到磁盘;
9. commit
1. 在1-8步骤的任意一步系统宕机,事务未提交,该事务就不会对磁盘上的数据做任何影响。
2. 如果在8-9之间宕机。
- redo log 进行恢复
- undo log 发现有事务没完成进行回滚。
3. 若在9之后系统宕机,内存映射中变更的数据还来不及刷回磁盘,那么系统恢复之后,可以根据redo log把数据刷回磁盘。