第三章:简单排序算法(冒泡排序、选择排序、插入排序)

上一篇:数据结构以及时间、空间复杂度分析

三、简单排序

​ 在我们的程序中,排序是非常常见的一种需求,提供一些数据元素,把这些数据元素按照一定的规则进行排序。比如查询一些订单,按照订单的日期进行排序;再比如查询一些商品,按照商品的价格进行排序等等。所以,接下来我们要学习一些常见的排序算法。在java的开发工具包jdk中,已经给我们提供了很多数据结构与算法的实现,比如List,Set,Map,Math等等,都是以API的方式提供,这种方式的好处在于一次编写,多处使用。我们借鉴jdk的方式,也把算法封装到某个类中,那如果是这样,在我们写java代码之前,就需要先进行API的设计,设计好之后,再对这些API进行实现。就比如我们先设计一套API如下:

image-20221204001911517

然后再使用java代码去实现它。以后我们讲任何数据结构与算法都是以这种方式讲解

1.1 Comparable接口介绍

​ 由于我们这里要讲排序,所以肯定会在元素之间进行比较,而Java提供了一个接口Comparable就是用来定义排序规则的,在这里我们以案例的形式对Comparable接口做一个简单的回顾。

需求:

  1. 定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则;

  2. 定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试

//学生类
public class Student implements Comparable<Student>{
    private String username;
    private int age;
    public String getUsername() {
        return username;
    }
    public void setUsername(String username) {
        this.username = username;
    }
    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
    @Override
    public String toString() {
        return "Student{" +
            "username='" + username + '\'' +
            ", age=" + age +
            '}';
    }
    //定义比较规则
    @Override
    public int compareTo(Student o) {
        return this.getAge()-o.getAge();
    }
}
//测试类
public class Test {
    public static void main(String[] args) {
        Student stu1 = new Student();
        stu1.setUsername("zhangsan");
        stu1.setAge(17);
        Student stu2 = new Student();
        stu2.setUsername("lisi");
        stu2.setAge(19);
        Comparable max = getMax(stu1, stu2);
        System.out.println(max);
    }
    //测试方法,获取两个元素中的较大值
    public static Comparable getMax(Comparable c1,Comparable c2){
        int cmp = c1.compareTo(c2);
        if (cmp>=0){
            return c1;
        }else{
            return c2;
        }
    }
}
测试结果:Student{username='lisi', age=19}

1.2 冒泡排序

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。

需求:

排序前:{4,5,6,3,2,1}

排序后:{1,2,3,4,5,6}

排序原理:

  1. 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。

  2. 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值

冒泡排序API设计:

冒泡排序的代码实现:

//排序代码
public class Bubble {
    /*对数组a中的元素进行排序*/
    public static void sort(Comparable[] a){
        for(int i=a.length-1;i>0;i--){
            for(int j=0;j<i;j++){
                //{6,5,4,3,2,1}
                //比较索引j和索引j+1处的值
                if (greater(a[j],a[j+1])){
                    exch(a,j,j+1);
                }
            }
        }
    }

    /*比较v元素是否大于w元素*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*数组元素i和j交换位置*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) {
        Integer[] a = {4, 5, 6, 3, 2, 1};
        Bubble.sort(a);
        System.out.println(Arrays.toString(a));
    }
}
测试结果:[1,2,3,4,5,6]

冒泡排序的时间复杂度分析 冒泡排序使用了双层for循环,其中内层循环的循环体是真正完成排序的代码,所以,我们分析冒泡排序的时间复杂度,主要分析一下内层循环体的执行次数即可。在最坏情况下,也就是假如要排序的元素为{6,5,4,3,2,1}逆序,那么:

元素比较的次数为:(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)(N-1)/2=N^2/2-N/2;

元素交换的次数为:(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;

总执行次数为:(N^2 /2-N/2)+(N^2 /2-N/2)=N^2-N;

按照大O推导法则,保留函数中的最高阶项那么最终冒泡排序的时间复杂度为O(N^2).

1.3 选择排序

选择排序是一种更加简单直观的排序方法。

需求:

排序前:{4,6,8,7,9,2,10,1}

排序后:{1,2,4,5,7,8,9,10}

排序原理:

  1. 每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引

  2. 交换第一个索引处和最小值所在的索引处的值

选择排序API设计:

image-20221204183119490

选择排序的代码实现:

public class Selection {
    /*对数组a中的元素进行排序*/
    public static void sort(Comparable[] a){
        for (int i=0;i<=a.length-2;i++){
            //假定本次遍历,最小值所在的索引是i
            int minIndex=i;
            for (int j=i+1;j<a.length;j++){
                if (greater(a[minIndex],a[j])){
                    //跟换最小值所在的索引
                    minIndex=j;
                }
            }
            //交换i索引处和minIndex索引处的值
            exch(a,i,minIndex);
        }
    }
    /*比较v元素是否大于w元素*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*数组元素i和j交换位置*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) {
        Integer[] a = {4,6,8,7,9,2,10,1};
        Selection.sort(a);
        System.out.println(Arrays.toString(a));
    }
}

选择排序的时间复杂度分析:

选择排序使用了双层for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据交换次数和数据比较次数:

数据比较次数: (N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;

**数据交换次数:**N-1

**时间复杂度:**N^2 /2-N/2+(N-1)=N^2/2+N/2-1;

根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);

1.4 插入排序

​ 插入排序(Insertion sort)是一种简单直观且稳定的排序算法。

​ 插入排序的工作方式非常像人们排序一手扑克牌一样。开始时,我们的左手为空并且桌子上的牌面朝下。然后,我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较,如下图所示:

需求:

排序前:{4,3,2,10,12,1,5,6}

排序后:{1,2,3,4,5,6,10,12}

排序原理:

  1. 把所有的元素分为两组,已经排序的和未排序的;

  2. 找到未排序的组中的第一个元素,向已经排序的组中进行插入;

  3. 倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置,其他的元素向后移动一位;

image-20230110143141904

插入排序API设计:

image-20221204214642658

插入排序代码实现:

public class Insertion {
    /*对数组a中的元素进行排序*/
    public static void sort(Comparable[] a){
        for (int i=1;i<a.length;i++){
            //当前元素为a[i],依次和i前面的元素比较,找到一个小于等于a[i]的元素
            for (int j=i;j>0;j--){
                if (greater(a[j-1],a[j])){
                    //交换元素
                    exch(a,j-1,j);
                }else {
                    //找到了该元素,结束
                    break;
                }
            }
        }
    }
    /*比较v元素是否大于w元素*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*数组元素i和j交换位置*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}

插入排序的时间复杂度分析

​ 插入排序使用了双层for循环,其中内层循环的循环体是真正完成排序的代码,所以,我们分析插入排序的时间复杂度,主要分析一下内层循环体的执行次数即可。

最坏情况,也就是待排序的数组元素为{12,10,6,5,4,3,2,1},那么:

比较的次数为:(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;

交换的次数为:(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;

总执行次数为:(N2/2-N/2)+(N2/2-N/2)=N^2-N;

按照大O推导法则,保留函数中的最高阶项那么最终插入排序的时间复杂度为O(N^2).

第一、二章:数据结构以及时间、空间复杂度分析
第三章:简单排序算法(冒泡排序、选择排序、插入排序)
第四章:高级排序(希尔、归并、快速排序以及排序的稳定性)
第五章:线性表、链表、栈以及队列
第六章:数据结构(无序、有序符号表)
第七章:数据结构(二叉树入门、遍历以及折纸问题)
第八章:数据结构(堆的定义、实现以及排序)
第九章:数据结构-队列(最大优先、最小优先、索引优先)
第十章:数据结构-平衡树、红黑树
第十一章:数据结构-并查集以及应用
第十二章:数据结构-图的入门(图的定义、无向图、图的搜索、路径查找)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熬夜想瑞瑞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值