专题一简单搜索
这个专题主要是使用bfs,dfs来解决问题
1. 棋盘问题原题链接
给定一个指定形状的棋盘,和一定数量的棋子,使用旗子去填棋盘,要使得所有的旗子不在同一行,或同一列,求总共有多少种摆法。(旗子都相同,没有区别)
这个题与八皇后问题相似,使用dfs探索出所有符合条件的路。
import java.util.Scanner;
public class Main {
private String[] map;
private int[] visted;
private int n;
private int k;
private int res;
public static void main(String[] args) {
new Main().resolve();
}
public void resolve() {
Scanner scanner = new Scanner(System.in);
while (true) {
String s = scanner.nextLine();
String[] ss = s.split(" ");
n = Integer.parseInt(ss[0]);
k = Integer.parseInt(ss[1]);
if (n == -1 || k == -1) {
break;
}
map = new String[n];
visted = new int[n];
for (int i = 0; i < n; i++) {
map[i] = scanner.nextLine();
}
dfs(0, k);
System.out.println(res);
res = 0;
}
}
private void dfs(int line, int k_now) {
if (k_now == 0) {
res++;
return;
}
if (line == n) {
return;
}
for (int i = 0; i < n; i++) {
if (map[line].charAt(i) == '#' && visted[i] == 0) {
visted[i] = 1;
dfs(line + 1, k_now - 1);
visted[i] = 0;
}
}
dfs(line + 1, k_now);
}
}
2. dungeon master原题链接
迷宫问题,一个3D迷宫,寻找最短出路。我这里使用了两种方法
-
(超时)使用dfs可以找到所有路径,从中找出最短的路径即可获得最优解。
因为每条路都探索,并且有重复走过的路程,比如 (1,2,3)->(1,2,2)->(1,2,1) , (1,2,3)->(1,1,3)->(1,1,1)->(1,2,1)->(1,2,2)->(1,2,1),后面有重复的路(1,2,2)->(1,2,1),也就是说在第二次探索路的时候,如果将第一次探索的结果存起来,在到(1,2,2)的时,就可以知道还有一步即可到达终点(1,2,1)。
那我们是不是可以把距离存起来呢,答案是否定的,因为需要的是最短距离,dfs是深度优先是做不到的,就拿上面的举例,假设(1,2,3)和(1,2,1)不是起点和终点,而是需要经过的点,如果先走的是第一条我们标记(1,2,3)->(1,2,1)距离为2,之后当搜索到(1,2,3)时,我们只需加上2,便是到(1,2,1)的距离。但是要是先走的是第二条,就是加6了,显然不合理。
因此可以想到要是用bfs自然可以解决这个问题,bfs每次循环,即得到下一步可以到达的所以点,因此一点是最短的路。
import java.util.Scanner; public class Main { private static int[] x_move = { 1, -1, 0, 0, 0, 0 }; private static int[] y_move = { 0, 0, 1, -1, 0, 0 }; private static int[] z_move = { 0, 0, 0, 0, 1, -1 }; private String[][] maze; private int l; private int r; private int c; private int[][][] visted; private int res = Integer.MAX_VALUE; public static void main(String[] args) { new Main().resolve(); } public void resolve() { Scanner scanner = new Scanner(System.in); while (true) { String firstLine = scanner.nextLine(); String[] ss = firstLine.split(" "); l = Integer.parseInt(ss[0]); r = Integer.parseInt(ss[1]); c = Integer.parseInt(ss[2]); if (l == 0 || r == 0 || c == 0) { break; } maze = new String[l][r]; visted = new int[l][r][c]; int S_x = -1; int S_y = -1; int S_z = -1; for (int i = 0; i < l; i++) { for (int j = 0; j < r; j++) { maze[i][j] = scanner.nextLine(); } scanner.nextLine(); } here: for (int i = 0; i < l; i++) { for (int j = 0; j < r; j++) { if ((S_y = maze[i][j].indexOf("S")) != -1) { S_z = i; S_x = j; break here; } } } dfs(S_x, S_y, S_z, 0); if (res == Integer.MAX_VALUE) { System.out.println("Trapped!"); } else System.out.println("Escaped in " + res + " minute(s)."); res = Integer.MAX_VALUE; } } private void dfs(int x, int y, int z, int steps) { if (x < 0 || x >= c || y < 0 || y >= r || z < 0 || z >= l || visted[z][y][x] == 1 || maze[z][y].charAt(x) == '#') { return; } if (maze[z][y].charAt(x) == 'E') { res = res > steps ? steps : res; return; } visted[z][y][x] = 1; for (int i = 0; i < 6; i++) { dfs(x + x_move[i], y + y_move[i], z + z_move[i], steps + 1); } visted[z][y][x] = 0; } }
-
bfs解法
import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().resolve(); } class Point { int x; int y; int z; int step; public Point(int x, int y, int z, int step) { this.x = x; this.y = y; this.z = z; this.step = step; } } private static int[] x_move = { 1, -1, 0, 0, 0, 0 }; private static int[] y_move = { 0, 0, 1, -1, 0, 0 }; private static int[] z_move = { 0, 0, 0, 0, 1, -1 }; private String[][] maze; private int l; private int r; private int c; private int[][][] visted; private Queue<Point> queue; private int res = -1; public void resolve() { Scanner scanner = new Scanner(System.in); while (true) { String firstLine = scanner.nextLine(); String[] ss = firstLine.split(" "); l = Integer.parseInt(ss[0]); r = Integer.parseInt(ss[1]); c = Integer.parseInt(ss[2]); if (l == 0 || r == 0 || c == 0) { break; } maze = new String[l][r]; visted = new int[l][r][c]; int S_x = -1; int S_y = -1; int S_z = -1; for (int i = 0; i < l; i++) { for (int j = 0; j < r; j++) { maze[i][j] = scanner.nextLine(); } scanner.nextLine(); } here: for (int i = 0; i < l; i++) { for (int j = 0; j < r; j++) { if ((S_x = maze[i][j].indexOf("S")) != -1) { S_z = i; S_y = j; break here; } } } queue = new LinkedList<Point>(); queue.offer(new Point(S_x, S_y, S_z, 0)); visted[S_z][S_y][S_x] = 1; Bfs(); if (res == -1) { System.out.println("Trapped!"); } else System.out.println("Escaped in " + res + " minute(s)."); res = -1; } } private void Bfs() { while (!queue.isEmpty()) { Point now = queue.poll(); for (int i = 0; i < 6; i++) { int x = now.x + x_move[i]; int y = now.y + y_move[i]; int z = now.z + z_move[i]; if (x < 0 || x >= c || y < 0 || y >= r || z < 0 || z >= l || visted[z][y][x] == 1 || maze[z][y].charAt(x) == '#') { continue; } Point next = new Point(x, y, z, now.step + 1); if (maze[z][y].charAt(x) == 'E') { res = next.step; return; } visted[z][y][x] = 1; queue.offer(next); } } } }
3. Catch That Cow原题链接
给定两个数字,求其中一个数字至少经过多少次+1,-1,*2操作后可以成为另一个数。
一次有三个选择,+1,-1或*2。使用bfs。
分析一下可以进行剪枝,比如start比end小,只能进行-1(比如81->1,加一和乘二显然是不可以的,所以就是80)
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static int[] ans = new int[100001];
static boolean[] visited = new boolean[100001];
public static void resolve() {
Queue<Integer> queue = new LinkedList<Integer>();
int start;
int end;
Scanner scanner = new Scanner(System.in);
String string = scanner.nextLine();
String[] ss = string.split(" ");
start = Integer.parseInt(ss[0]);
end = Integer.parseInt(ss[1]);
queue.offer(start);
visited[start] = true;
if (end <= start) {
System.out.println(start - end);
return;
}
while (!queue.isEmpty()) {
int now = queue.poll();
for (int i = 0; i < 3; i++) {
int next = now;
if (i == 0) {
next -= 1;
} else if (i == 1) {
next += 1;
} else {
next *= 2;
}
if (next == end) {
System.out.println(ans[now] + 1);
return;
} else if (next >= 0 && next <= 100000 && visited[next] == false) {
queue.offer(next);
visited[next] = true;
ans[next] = ans[now] + 1;
}
}
}
}
public static void main(String[] args) {
resolve();
}
}