Redis基础介绍

本文深入介绍了Redis的基础知识,包括与MySQL的对比,以及SQL与NoSQL的区别。接着详细讨论了Redis的持久化机制,如RDB和AOF,并探讨了Redis的高可用性解决方案——哨兵模式,包括其结构、工作方式和故障转移过程。此外,还介绍了Redis Cluster的主要特性和设计,包括数据切片和一致性哈希。文章最后详细阐述了一致性Hash算法,解释了其优势以及如何解决数据倾斜问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Redis

(1)Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。 它支持多种类型的数据结构,如 字符串(strings), 散列(hashes), 列表(lists), 集合(sets), 有序集合(sorted sets) 与范围查询, bitmaps, hyperloglogs 和 地理空间(geospatial) 索引半径查询。 Redis 内置了 复制(replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence), 并通过 Redis哨兵(Sentinel)和自动分区(Cluster)提供高可用性(high availability)。
(2)Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
(3)redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
(4)Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。
(5)Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。存盘可以有意无意的对数据进行写操作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取操作的可扩展性和数据冗余很有帮助。
(6)redis的官网地址,非常好记,是redis.io。(特意查了一下,域名后缀io属于国家域名,是british Indian Ocean territory,即英属印度洋领地)目前,Vmware在资助着redis项目的开发和维护。

redis和mysql的区别

  • mysql和redis的数据库类型
    mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。
    redis是NOSQL,即非关系型数据库,也是缓存数据库,即将数据存储在缓存中,缓存的读取速度快,
    能够大大的提高运行效率,但是保存时间有限。

  • mysql的运行机制
    mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O操作,如果反复频繁的访问数据库。
    第一:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;
    第二:反复的访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。

  • 缓存
    缓存就是数据交换的缓冲区(cache),当浏览器执行请求时,首先会对在缓存中进行查找,如果存在,就获取;否则就访问数据库。
    缓存的好处就是读取速度快

  • redis数据库
    redis数据库就是一款缓存数据库,用于存储使用频繁的数据,这样减少访问数据库的次数,提高运行效率。

MySQL是关系型数据库,是持久化存储的,查询检索的话,会涉及到磁盘IO操作,为了提高性能,可以使用缓存技术,而memcached就是内存数据库,数据存储在内存中(当然也可以进行持久化存储),可以用作缓存数据库。用户首先去memcached查询数据,如果未查询到(即缓存未命中),才去MySQL中查询数据,查询到的数据会更新到缓存数据库中,提供给下次可能进行的查询。提高了数据查询方面的性能。
Redis和memcached都是缓存数据库,可以大大提升高数据量的web访问速度。
但是memcached只是提供了简单的数据结构string,而Redis的value可以是string、list、set、hash、sorted set这些,功能更加强大。
web应用中一般采用MySQL+Redis的方式,web应用每次先访问Redis,如果没有找到数据,才去访问MySQL。
Redis是内存数据库,数据保存在内存中,访问速度快。MySQL是关系型数据库,功能强大,存储在磁盘中,数据访问速度慢。像memcached,MongoDB,Redis等,都属于No sql系列。

sql和nosql的区别

SQL (Structured Query Language) 数据库,指关系型数据库。主要代表:SQL
Server,Oracle,MySQL(开源),PostgreSQL(开源) NoSQL(Not Only
SQL)泛指非关系型数据库。主要代表:MongoDB,Redis,CouchDB

  • 存储方式
    SQL数据存在特定结构的表中;而NoSQL则更加灵活和可扩展,存储方式可以省是JSON文档、哈希表或者其他方式。
    SQL通常以数据库表形式存储数据

  • 表/数据集合的数据的关系
    在SQL中,必须定义好表和字段结构后才能添加数据,例如定义表的主键(primary key),索引(index),触发器(trigger),存储过程(stored procedure)等。表结构可以在被定义之后更新,但是如果有比较大的结构变更的话就会变得比较复杂。
    在NoSQL中,数据可以在任何时候任何地方添加,不需要先定义表。
    NoSQL也可以在数据集中建立索引。以MongoDB为例,会自动在数据集合创建后创建唯一值_id字段,
    这样的话就可以在数据集创建后增加索引。
    从这点来看,NoSQL可能更加适合初始化数据还不明确或者未定的项目中。

  • 外部数据存储
    SQL中如何需要增加外部关联数据的话,规范化做法是在原表中增加一个外键,关联外部数据表。
    而在NoSQL中除了这种规范化的外部数据表做法以外,我们还能用非规范化方式把外部数据直接放到原数据集中,以提高查询效率。

  • SQL中的JOIN查询
    SQL中可以使用JOIN表链接方式将多个关系数据表中的数据用一条简单的查询语句查询出来。
    NoSQL暂未提供类似JOIN的查询方式对多个数据集中的数据做查询。所以大部分NoSQL使用非规范化的数据存储方式存储数据。

  • 数据耦合性
    SQL中不允许删除已经被使用的外部数据,以保证数据完整性。而NoSQL中则没有这种强耦合的概念,可以随时删除任何数据。

  • 事务
    SQL中如果多张表数据需要同批次被更新,即如果其中一张表更新失败的话其他表也不能更新成功。
    这种场景可以通过事务来控制,可以在所有命令完成后再统一提交事务。
    而NoSQL中没有事务这个概念,每一个数据集的操作都是原子级的。

  • 查询性能
    在相同水平的系统设计的前提下,因为NoSQL中省略了JOIN查询的消耗,故理论上性能上是优于SQL的。

目前许多大型互联网项目都会选用MySQL(或任何关系型数据库) + NoSQL的组合方案。

关系型数据库适合存储结构化数据
1)这些数据通常需要做结构化查询(嗯,好像是废话),比如join,这时候,关系型数据库就要胜出一筹
2)这些数据的规模、增长的速度通常是可以预期的
3)事务性、一致性

NoSQL适合存储非结构化数据,
1)这些数据通常用于模糊处理,如全文搜索、机器学习
2)这些数据是海量的,而且增长的速度是难以预期的,
3)根据数据的特点,NoSQL数据库通常具有无限(至少接近)伸缩性
4)按key获取数据效率很高,但是对join或其他结构化查询的支持就比较差
基于它们的适用范围不同,目前主流架构才会采用组合方案,一个也不能少。
目前为止,还没有出现一个能够通吃各种场景的数据库,而且根据CAP理论,这样的数据库是不存在的。
redis是Nosql数据库,是一个key-value存储系统
虽然redis是key-value的存储系统,但是redis支持的value存储类型是非常的多,比如字符串、链表、集合、有序集合和哈希
那么为什么要使用类似redis这样的Nosql数据库呢?
(1) 当数据量的总大小一个机器放不下时;
(2)数据索引一个机器的内存放不下时;
(3)访问量(读写混合)一个实例放不下时。
单机时代,存储只用一台机器装mysql,如果每次存储成千上万条数据,这样很会导致mysql的性能很差,存储以及读取速度很慢,然后就演变成缓存+mysql+垂直拆分的方式。
Cache作为中间缓存时代,将所有的数据先保存到缓存中,然后再存入mysql中,减小数据库压力,提高效率。
但是当数据再次增加到又一个量级,上面的方式也不能满足需求,由于数据库的写入压力增加,缓存只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。
主从分离模式时代,在redis的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。

Nosql数据库的优势

(1)易扩展
这些类型的数据存储不需要固定的模式,无需多余的操作就可以进行横向的扩展。
相对于关系型数据库可以减少表和字段特别多的情况。也无型之间在架构的层面上带来了可扩展的能力
(2)大数据量提高性能
(3)多样灵活的数据模型

redis的应用

Redis 在 Java Web 中的应用
Redis 在 Java Web 主要有两个应用场景:
存储缓存用的数据;需要高速读/写的场合使用它快速读/写;

持久化

RDB快照(snapshot)

在默认情况下, Redis 将内存数据库快照保存在名字为dump.rdb的二进制文件中。
你可以对 Redis 进行设置, 让它在N秒内数据集至少有M个改动这一条件被满足时, 自动保存一次数据集。
比如说, 以下设置会让 Redis 在满足60秒内有至少有1000个键被改动”这一条件时, 自动保存一次数据集:
redis.conf文件里面有默认的3种情况,3种是或的关系。

AOF(append-only file)

快照功能并不是非常耐久(durable): 如果 Redis 因为某些原因而造成故障停机, 那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。从 1.1 版本开始, Redis 增加了一种完全耐久的持久化方式: AOF 持久化,将修改的每一条指令记录进文件
你可以通过修改配置文件来打开 AOF 功能:
开启后,每当 Redis 执行一个改变数据集的命令时(比如SET), 这个命令就会被追加到 AOF 文件的末尾。
这样的话, 当 Redis 重新启时, 程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。
你可以配置 Redis 多久才将数据fsync到磁盘一次。
有三个选项:
每次有新命令追加到 AOF 文件时就执行一次fsync:非常慢,也非常安全。
每秒fsync一次:足够快(和使用 RDB 持久化差不多),并且在故障时只会丢失 1 秒钟的数据。
从不fsync:将数据交给操作系统来处理。更快,也更不安全的选择。
推荐(并且也是默认)的措施为每秒fsync一次, 这种fsync策略可以兼顾速度和安全性。

RDB 和 AOF ,我应该用哪一个?

如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失, 那么你可以只使用 RDB 持久化。
有很多用户都只使用 AOF 持久化, 但我们并不推荐这种方式: 因为定时生成 RDB 快照(snapshot)非常便于进行数据库备份,
并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。

缓存淘汰策略(解决数据热点问题)

当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap)。
交换会让 Redis 的性能急剧下降,对于访问量比较频繁的 Redis 来说,这样龟速的存取效率基本上等于不可用。
在生产环境中我们是不允许 Redis 出现交换行为的,为了限制最大使用内存,
Redis 提供了配置参数 maxmemory 来限制内存超出期望大小。
当实际内存超出 maxmemory 时,
Redis 提供了几种可选策略 (maxmemory-policy) 来让用户自己决定该如何腾出新的空间以继续提供读写服务。


(1)noeviction
不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。

(2)volatile-lru
尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。
没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失。

(3)volatile-ttl
跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl 越小越优先被淘汰。

(4)volatile-random
跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。

(5)allkeys-lru
区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。
这意味着没有设置过期时间的 key 也会被淘汰。
allkeys-random跟上面一样,不过淘汰的策略是随机的 key。

==(6)volatile-xxx ==
策略只会针对带过期时间的 key 进行淘汰,allkeys-xxx 策略会对所有的 key 进行淘汰。如果你只是拿 Redis 做缓存,那应该使用 allkeys-xxx,客户端写缓存时不必携带过期时间。如果你还想同时使用 Redis 的持久化功能,那就使用 volatile-xxx 策略,这样可以保留没有设置过期时间的 key,它们是永久的 key 不会被 LRU 算法淘汰。
REDIS集群

Redis在3.0版正式引入了集群特性。Redis集群是一个分布式(distributed)、容错(fault-tolerant)的 Redis内存K/V服务, 普通单机 Redis 使用的功能 仅是集群中功能的一个子集(subset)。Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性能,在高负载的情况下可能会导致不可预料的错误。

REDIS CLUSTER主要特性和设计

集群目标

(1)高性能和线性扩展,最大可以支撑到1000个节点;Cluster架构中无Proxy层,Master与slave之间使用异步replication, 且不存在操作的merge。(即操作不能跨多个nodes,不存在merge层) 

(2)一定程度上保证writes的安全性,需要客户端容忍一定程度的数据丢失:集群将会尽可能(best-effort)保存客户端write操作的数据;通常在failover期间,会有短暂时间内的数据丢失(因为异步replication引起);当客户端与少数派的节点处于网络分区时(network partition),丢失数据的可能性会更高。(因为节点有效性检测、failover需要更长的时间)

(3)可用性:只要集群中大多数master可达、且失效的master至少有一个slave可达时,集群都可以继续提供服务;同时“replicas migration”可以将那些拥有多个slaves的master的某个slave,迁移到没有slave的master下,即将slaves的分布在整个集群相对平衡,尽力确保每个master都有一定数量的slave备份。

REDIS集群的几个重要特征

(1).Redis 集群的分片特征在于将键空间分拆了16384个槽位,每一个节点负责其中一些槽位。 (2).Redis提供一定程度的可用性,可以在某个节点宕机或者不可达的情况下继续处理命令. (3).Redis 集群中不存在中心(central)节点或者代理(proxy)节点, 集群的其中一个主要设计目标是达到线性可扩展性(linear scalability)。

集群客户端连接集群中任一Redis Instance即可发送命令,当Redis Instance收到自己不负责的Slot的请求时,会将负责请求Key所在Slot的Redis Instance地址返回给客户端,客户端收到后自动将原请求重新发往这个地址,对外部透明。一个Key到底属于哪个Slot由crc16(key) % 16384 决定。

REDIS数据切片

Redis 集群的键空间被分割为 16384 (2^14)个槽(slot), 集群的最大节点数量也是 16384 个(推荐的最大节点数量为 1000 个),同理每个主节点可以负责处理1到16384个槽位。当16384个槽位都有主节点负责处理时,集群进入“稳定”上线状态,可以开始处理数据命令。当集群没有处理稳定状态时,可以通过执行重配置(reconfiguration)操作,使得每个哈希槽都只由一个节点进行处理。 重配置指的是将某个/某些槽从一个节点移动到另一个节点。一个主节点可以有任意多个从节点, 这些从节点用于在主节点发生网络断线或者节点失效时, 对主节点进行替换。 集群的使用公式HASH_SLOT=CRC16(key) mod 16384 计算key属于哪个槽。CRC16其结果长度为16位。

REDIS集群节点

Redis 集群中的节点不仅要记录键和值的映射,还需要记录集群的状态,包括键到正确节点的映射。它还具有自动发现其他节点,识别工作不正常的节点,并在有需要时,在从节点中选举出新的主节点的功能。为了执行以上列出的任务, 集群中的每个节点都与其他节点建立起了“集群连接(cluster bus)”, 该连接是一个 TCP 连接, 使用二进制协议进行通讯。 节点之间使用 Gossip 协议 来进行以下工作: (a).传播(propagate)关于集群的信息,以此来发现新的节点; (b).向其他节点发送 PING 数据包,以此来检查目标节点是否正常运作; (c).在特定事件发生时,发送集群信息. 除此之外, 集群连接还用于在集群中发布或订阅信息。

集群节点不能前端代理命令请求, 所以客户端应该在节点返回 -MOVED或者 -ASK转向(redirection)错误时, 自行将命令请求转发至其他节点。 客户端可以自由地向集群中的任何一个节点发送命令请求, 并可以在有需要时, 根据转向错误所提供的信息, 将命令转发至正确的节点, 所以在理论上来说, 客户端是无须保存集群状态信息的。但如果客户端可以将键和节点之间的映射信息保存起来, 可以有效地减少可能出现的转向次数, 借此提升命令执行的效率。 每个节点在集群中由一个独一无二的 ID标识, 该 ID 是一个十六进制表示的 160 位随机数,在节点第一次启动时由 /dev/urandom 生成。节点会将它的 ID 保存到配置文件, 只要这个配置文件不被删除, 节点就会一直沿用这个 ID 。一个节点可以改变它的 IP 和端口号, 而不改变节点 ID 。 集群可以自动识别出IP/端口号的变化, 并将这一信息通过 Gossip协议广播给其他节点知道。

GOSSIP协议

节点之间采用Gossip协议进行通信,Gossip协议就是指节点彼此之间不断通信交换信息,当主从角色变化或新增节点,彼此通过ping/pong进行通信知道全部节点的最新状态并达到集群同步. Gossip协议的主要职责就是信息交换,信息交换的载体就是节点之间彼此发送的Gossip消息,常用的Gossip消息有ping消息、pong消息、meet消息、fail消息. meet消息:用于通知新节点加入,消息发送者通知接收者加入到当前集群,meet消息通信完后,接收节点会加入到集群中,并进行周期性ping pong交换

ping消息:集群内交换最频繁的消息,集群内每个节点每秒向其它节点发ping消息,用于检测节点是在在线和状态信息,ping消息发送封装自身节点和其他节点的状态数据; pong消息,当接收到ping meet消息时,作为响应消息返回给发送方,用来确认正常通信,pong消息也封闭了自身状态数据; fail消息:当节点判定集群内的另一节点下线时,会向集群内广播一个fail消息,

消息解析流程

所有消息格式为:消息头、消息体,消息头包含发送节点自身状态数据(比如节点ID、槽映射、节点角色、是否下线等),接收节点根据消息头可以获取到发送节点的相关数据。

选择节点并发送PING消息

Gossip协议信息的交换机制具有天然的分布式特性,但ping,pong发送的频率很高,可以实时得到其它节点的状态数据,但频率高会加重带宽和计算能力,因此每次都会有目的性地选择一些节点; 但是节点选择过少又会影响故障判断的速度,redis集群的Gossip协议兼顾了这两者的优缺点,

故障转移

redis集群实现了高可用,当集群内少量节点出现故障时,通过故障转移可以保证集群正常对外提供服务。当集群里某个节点出现了问题,redis集群内的节点通过ping pong消息发现节点是否健康,是否有故障,其实主要环节也包括了:主观下线和客观下线;主观下线:指某个节点认为另一个节点不可用,即下线状态,当然这个状态不是最终的故障判定,只能代表这个节点自身的意见,也有可能存在误判;

下线流程:

 A,节点a发送ping消息给节点b ,如果通信正常将接收到pong消息,节点a更新最近一次与节点b的通信时间; 
 B,如果节点a与节点b通信出现问题则断开连接,下次会进行重连,如果一直通信失败,则它们的最后通信时间将无法更新; 节点a内的定时任务检测到与节点b最后通信时间超过cluster_note-timeout时,更新本地对节点b的状态为主观下线(pfail) 客观下线:指真正的下线,集群内多个节点都认为该节点不可用,达成共识,将它下线,如果下线的节点为主节点,还要对它进行故障转移 假如节点a标记节点b为主观下线,一段时间后节点a通过消息把节点b的状态发到其它节点,当节点c接受到消息并解析出消息体时,会发现节点b的pfail状态时,会触发客观下线流程; 当下线为主节点时,此时redis集群为统计持有槽的主节点投票数是否达到一半,当下线报告统计数大于一半时,被标记为客观下线状态。

故障恢复: `

故障主节点下线后,如果下线节点的是主节点,则需要在它的从节点中选一个替换它,保证集群的高可用;转移过程如下: 1,资格检查:检查该从节点是否有资格替换故障主节点,如果此从节点与主节点断开过通信,那么当前从节点不具体故障转移; 2,准备选举时间:当从节点符合故障转移资格后,更新触发故障选举时间,只有到达该时间后才能执行后续流程; 3,发起选举:当到达故障选举时间时,进行选举; 4,选举投票:只有持有槽的主节点才有票,会处理故障选举消息,投票过程其实是一个领导者选举(选举从节点为领导者)的过程,每个主节点只能投一张票给从节点,当从节点收集到足够的选票(大于N/2+1)后,触发替换主节点操作,撤销原故障主节点的槽,委派给自己,并广播自己的委派消息,通知集群内所有节点。

数据迁移

当前集群有3个节点,槽默认是平均分的: 节点 A (6381)包含 0 到 5499号哈希槽. 节点 B (6382)包含5500 到 10999 号哈希槽. 节点 C (6383)包含11000 到 16383号哈希槽. 这种结构很容易添加或者删除节点. 比如如果我想新添加个节点D, 我需要从节点 A, B, C中得部分槽到D上. 如果我像移除节点A,需要将A中得槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可. 由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态.

数据迁移可以理解为slot()和key的迁移,这个功能很重要,极大地方便了集群做线性扩展,以及实现平滑的扩容或缩容。 现在要将Master A节点中编号为1、2、3的slot迁移到Master B节点中,在slot迁移的中间状态下,slot 1、2、3在Master A节点的状态表现为MIGRATING(迁移),在Master B节点的状态表现为IMPORTING(入口)。此时并不刷新node的映射关系

IMPORTING状态: 被迁移slot 在目标Master B节点中出现的一种状态,准备迁移slot从Mater A到Master B的时候,被迁移slot的状态首先变为IMPORTING状态。 键空间迁移: 键空间迁移是指当满足了slot迁移前提的情况下,通过相关命令将slot 1、2、3中的键空间从Master A节点转移到Master B节点。此时刷新node的映射关系。

常见问题

REDIS如何做持久化的?

bgsave做镜像全量持久化,aof做增量持久化。因为bgsave会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。在redis实例重启时,会使用bgsave持久化文件重新构建内存,再使用aof重放近期的操作指令来实现完整恢复重启之前的状态。

REDIS集群的原理是什么?

Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。 Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。

REDIS的同步机制了解么?

Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。

sentinel哨兵模式介绍

  • Sentinel(哨兵)是Redis的高可用性解决方案:由一个或多个Sentinel实例组成的Sentinel系统可以监视任意多个主服务器,
    以及这些主服务器属下的所有从服务器,并在被监视的主服务器进入下线状态时,
    自动将下线主服务器属下的某个从服务器升级为新的主服务器。

  • Sentinel(哨兵)是用于监控redis集群中Master状态的工具,是Redis 的高可用性解决方案,
    sentinel哨兵模式已经被集成在redis2.4之后的版本中。sentinel是redis高可用的解决方案,
    sentinel系统可以监视一个或者多个redis master服务,以及这些master服务的所有从服务;
    当某个master服务下线时,自动将该master下的某个从服务升级为master服务替代已下线的master服务继续处理请求。

  • sentinel可让redis实现主从复制,当一个集群中的master失效之后,sentinel可以选举出一个新的master用于自动接替master的工作,
    集群中的其他redis服务器自动指向新的master同步数据。一般建议sentinel采取奇数台,防止某一台sentinel无法连接到master导致误切换。

sentinel哨兵模式的结构

在这里插入图片描述

  • Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Master-slave的高可用方案
  • 假如master宕机了,Redis本身(包括它的很多客户端)都没有实现自动进行主备切换
  • 而Redis-sentinel本身也是一个独立运行的进程,它能监控多个master-slave集群,发现master宕机后能进行自动切换
  • Sentinel由一个或多个Sentinel 实例 组成的Sentinel 系统可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器
  • 并在被监视的主服务器进入下线状态时,自动将下线主服务器属下的某个从服务器升级为新的主服务器
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

哨兵模式的其他知识

(1)Sentinel状态持久化

snetinel的状态会被持久化地写入sentinel的配置文件中。
每次当收到一个新的配置时,或者新创建一个配置时,配置会被持久化到硬盘中,并带上配置的版本戳。
这意味着,可以安全的停止和重启sentinel进程。

(2)Sentinel作用

Master状态检测
如果Master异常,则会进行Master-Slave切换,将其中一个Slave作为Master,将之前的Master作为Slave。
Master-Slave切换后,master_redis.conf、slave_redis.conf和sentinel.conf的内容都会发生改变,
即master_redis.conf中会多一行slaveof的配置,sentinel.conf的监控目标会随之调换。

(3)Sentinel工作方式(每个Sentinel实例都执行的定时任务)

1)每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个

PING命令。
2)如果一个实例(instance)距离最后一次有效回复PING命令的时间超过 own-after-milliseconds 选项所指定的值,
则这个实例会被Sentinel标记为主观下线。
3)如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。
4)当有足够数量的Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态,
则Master会被标记为客观下线。
5)在一般情况下,每个Sentinel 会以每10秒一次的频率向它已知的所有Master,Slave发送 INFO 命令。
6)当Master被Sentinel标记为客观下线时,Sentinel 向下线的 Master 的所有Slave发送 INFO命令的频率会从10秒一次改为每秒一次。
7)若没有足够数量的Sentinel同意Master已经下线,Master的客观下线状态就会被移除。
若 Master重新向Sentinel 的PING命令返回有效回复,Master的主观下线状态就会被移除。

(4)三个定时任务

sentinel在内部有3个定时任务

1)每10秒每个sentinel会对master和slave执行info命令,这个任务达到两个目的:
a)发现slave节点
b)确认主从关系
2)每2秒每个sentinel通过master节点的channel交换信息(pub/sub)。master节点上有一个发布订阅的频道(sentinel:hello)。
sentinel节点通过__sentinel__:hello频道进行信息交换(对节点的"看法"和自身的信息),达成共识。
3)每1秒每个sentinel对其他sentinel和redis节点执行ping操作(相互监控),这个其实是一个心跳检测,是失败判定的依据。

(5)主观下线

所谓主观下线(Subjectively Down, 简称 SDOWN)指的是单个Sentinel实例对服务器做出的下线判断,
即单个sentinel认为某个服务下线(有可能是接收不到订阅,之间的网络不通等等原因)。
主观下线就是说如果服务器在down-after-milliseconds给定的毫秒数之内, 没有返回 Sentinel 发送的 PING 命令的回复,
或者返回一个错误, 那么 Sentinel 将这个服务器标记为主观下线(SDOWN )。
sentinel会以每秒一次的频率向所有与其建立了命令连接的实例(master,从服务,其他sentinel)发ping命令,
通过判断ping回复是有效回复,还是无效回复来判断实例时候在线(对该sentinel来说是“主观在线”)。
sentinel配置文件中的down-after-milliseconds设置了判断主观下线的时间长度,
如果实例在down-after-milliseconds毫秒内,返回的都是无效回复,那么sentinel回认为该实例已(主观)下线,修改其flags状态为SRI_S_DOWN。如果多个sentinel监视一个服务,有可能存在多个sentinel的down-after-milliseconds配置不同,这个在实际生产中要注意。

(6)客观下线

客观下线(Objectively Down, 简称 ODOWN)指的是多个 Sentinel 实例在对同一个服务器做出 SDOWN 判断,
并且通过 SENTINEL is-master-down-by-addr 命令互相交流之后, 得出的服务器下线判断,然后开启failover。
客观下线就是说只有在足够数量的 Sentinel 都将一个服务器标记为主观下线之后, 服务器才会被标记为客观下线(ODOWN)。
只有当master被认定为客观下线时,才会发生故障迁移。
当sentinel监视的某个服务主观下线后,sentinel会询问其它监视该服务的sentinel,看它们是否也认为该服务主观下线,
接收到足够数量(这个值可以配置)的sentinel判断为主观下线,既任务该服务客观下线,并对其做故障转移操作。
sentinel通过发送 SENTINEL is-master-down-by-addr ip port current_epoch runid,(ip:主观下线的服务id,port:主观下线的服务端口,current_epoch:sentinel的纪元,runid:*表示检测服务下线状态,如果是sentinel 运行id,表示用来选举领头sentinel)来询问其它sentinel是否同意服务下线。
一个sentinel接收另一个sentinel发来的is-master-down-by-addr后,提取参数,根据ip和端口,检测该服务时候在该sentinel主观下线,
并且回复is-master-down-by-addr,回复包含三个参数:down_state(1表示已下线,0表示未下线),leader_runid(领头sentinal id),leader_epoch(领头sentinel纪元)。
sentinel接收到回复后,根据配置设置的下线最小数量,达到这个值,既认为该服务客观下线。
客观下线条件只适用于主服务器: 对于任何其他类型的 Redis 实例, Sentinel 在将它们判断为下线前不需要进行协商, 所以从服务器或者其他 Sentinel 永远不会达到客观下线条件。只要一个 Sentinel 发现某个主服务器进入了客观下线状态, 这个 Sentinel 就可能会被其他 Sentinel 推选出, 并对失效的主服务器执行自动故障迁移操作。

Redis Sentinel的主从切换方案

Redis 2.8版开始正式提供名为Sentinel的主从切换方案,通俗的来讲,
Sentinel可以用来管理多个Redis服务器实例,可以实现一个功能上实现HA的集群,Sentinel主要负责三个方面的任务:
1)监控(Monitoring): Sentinel 会不断地检查你的主服务器和从服务器是否运作正常。
2)提醒(Notification): 当被监控的某个 Redis 服务器出现问题时, Sentinel 可以通过 API 向管理员或者其他应用程序发送通知。
3)自动故障迁移(Automatic failover): 当一个主服务器不能正常工作时, Sentinel 会开始一次自动故障迁移操作, 它会将失效主服务器的其中一个从服务器升级为新的主服务器, 并让失效主服务器的其他从服务器改为复制新的主服务器; 当客户端试图连接失效的主服务器时, 集群也会向客户端返回新主服务器的地址, 使得集群可以使用新主服务器代替失效服务器。
Redis Sentinel 是一个分布式系统, 可以在一个架构中运行多个 Sentinel 进程(progress), 这些进程使用流言协议(gossip protocols)来接收关于主服务器是否下线的信息, 并使用投票协议(agreement protocols)来决定是否执行自动故障迁移, 以及选择哪个从服务器作为新的主服务器。

redis cluster集群

概述

在前面的文章中介绍过了redis的主从和哨兵两种集群方案,redis从3.0版本开始引入了redis-cluster(集群)。
从主从-哨兵-集群可以看到redis的不断完善;主从复制是最简单的节点同步方案无法主从自动故障转移。
哨兵可以同时管理多个主从同步方案同时也可以处理主从自动故障转移,通过配置多个哨兵节点可以解决单点网络故障问题,但是单个节点的性能压力问题无法解决。

集群解决了前面两个方案的所有问题。

(1)Redis-Cluster采用无中心结构
每个节点都和其它节点通过互ping保持连接,每个节点保存整个集群的状态信息,可以通过连接任意节点读取或者写入数据
(甚至是没有数据的空节点)。

(2)只有当集群中的大多数节点同时fail整个集群才fail
一般情况下是集群当中超过一半以上的节点fail的时候,集群才会fail

(3)整个集群有16384个slot
当需要在 Redis 集群中放置一个key-value 时,根据 CRC16(key) mod 16384的值,决定将一个key放到哪个桶中。
读取一个key时也是相同的算法。

(4)当主节点fail时从节点会升级为主节点
fail的主节点online之后自动变成了从节点


Redis集群中内置了 16384 个哈希槽,当需要在 Redis 集群中放置一个 key-value 时,redis 先对key 使用 crc16 算法算出一个结果,
然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,
redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。

哈希槽

Redis 集群没有使用一致性hash, 而是引入了哈希槽的概念。
Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽.集群的每个节点负责一部分hash槽。
这种结构很容易添加或者删除节点,并且无论是添加删除或者修改某一个节点,都不会造成集群不可用的状态。
使用哈希槽的好处就在于可以方便的添加或移除节点。
当需要增加节点时,只需要把其他节点的某些哈希槽挪到新节点就可以了;
当需要移除节点时,只需要把移除节点上的哈希槽挪到其他节点就行了;
在这一点上,我们以后新增或移除节点的时候不用先停掉所有的 redis 服务。

"用了哈希槽的概念,而没有用一致性哈希算法,不都是哈希么?这样做的原因是为什么呢?"
Redis Cluster是自己做的crc16的简单hash算法,没有用一致性hash。
Redis的作者认为它的crc16(key) mod 16384的效果已经不错了,
虽然没有一致性hash灵活,但实现很简单,节点增删时处理起来也很方便。

"为了动态增删节点的时候,不至于丢失数据么?"
节点增删时不丢失数据和hash算法没什么关系,不丢失数据要求的是一份数据有多个副本。

“还有集群总共有2的14次方,16384个哈希槽,那么每一个哈希槽中存的key 和 value是什么?”
当你往Redis Cluster中加入一个Key时,会根据crc16(key) mod 16384计算这个key应该分布到哪个hash slot中,
一个hash slot中会有很多key和value。你可以理解成表的分区,使用单节点时的redis时只有一个表,所有的key都放在这个表里;
改用Redis Cluster以后会自动为你生成16384个分区表,你insert数据时会根据上面的简单算法来决定你的key应该存在哪个分区,
每个分区里有很多key。

其他知识

集群:是一个提供多个Redis(分布式)节点间共享数据的程序集
集群部署:Redis 集群的键空间被分割为 16384 hash个槽(slot), 集群的最大节点数量也是 16384 个
关系:cluster>node>slot>key

在这里插入图片描述

分片
Redis Cluster在设计中没有使用一致性哈希(Consistency Hashing),而是使用数据分片引入哈希槽(hash slot)来实现;
一个 Redis Cluster包含16384(0~16383)个哈希槽,存储在Redis Cluster中的所有键都会被映射到这些slot中,
集群中的每个键都属于这16384个哈希槽中的一个,集群使用公式slot=CRC16(key)/16384来计算key属于哪个槽,
其中CRC16(key)语句用于计算key的CRC16 校验和。
按照槽来进行分片,通过为每个节点指派不同数量的槽,可以控制不同节点负责的数据量和请求数.

在这里插入图片描述

当前集群有3个节点,槽默认是平均分的:
节点 A (6381)包含 0 到 5499号哈希槽.
节点 B (6382)包含5500 到 10999 号哈希槽.
节点 C (6383)包含11000 到 16383号哈希槽.
这种结构很容易添加或者删除节点. 比如如果我想新添加个节点D, 我需要从节点 A, B, C中得部分槽到D上.
如果我想移除节点A,需要将A中得槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可.
由于从一个节点将哈希槽移动到另一个节点并不会停止服务,
所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态.

数据迁移

数据迁移可以理解为slot()和key的迁移,这个功能很重要,极大地方便了集群做线性扩展,以及实现平滑的扩容或缩容。
现在要将Master A节点中编号为1、2、3的slot迁移到Master B节点中,
在slot迁移的中间状态下,slot 1、2、3在Master A节点的状态表现为MIGRATING(迁移),
在Master B节点的状态表现为IMPORTING(入口)。

在这里插入图片描述

此时并不刷新node的映射关系
IMPORTING状态
被迁移slot 在目标Master B节点中出现的一种状态,
准备迁移slot从Mater A到Master B的时候,被迁移slot的状态首先变为IMPORTING状态。

键空间迁移

键空间迁移是指当满足了slot迁移前提的情况下,通过相关命令将slot 1、2、3中的键空间从Master A节点转移到Master B节点。
此时刷新node的映射关系。

在这里插入图片描述
复制&高可用:

集群的节点内置了复制和高可用特性。
特点:
1、节点自动发现
2、slave->master 选举,集群容错
3、Hot resharding:在线分片
4、基于配置(nodes-port.conf)的集群管理
5、客户端与redis节点直连、不需要中间proxy层.
6、所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽.

Hash一致性理解

摘自面试必备:什么是一致性Hash算法?
我们在使用Redis的时候,为了保证Redis的高可用,提高Redis的读写性能,最简单的方式我们会做主从复制,组成Master-Master或者Master-Slave的形式,或者搭建Redis集群,进行数据的读写分离,类似于数据库的主从复制和读写分离。如下所示:
在这里插入图片描述

redis集群
同样类似于数据库,当单表数据大于500W的时候需要对其进行分库分表,当数据量很大的时候(标准可能不一样,要看Redis服务器容量)我们同样可以对Redis进行类似的操作,就是分库分表。

假设,我们有一个社交网站,需要使用Redis存储图片资源,存储的格式为键值对,key值为图片名称,value为该图片所在文件服务器的路径,我们需要根据文件名查找该文件所在文件服务器上的路径,数据量大概有2000W左右,按照我们约定的规则进行分库,规则就是随机分配,我们可以部署8台缓存服务器,每台服务器大概含有500W条数据,并且进行主从复制,示意图如下:
Redis主从复制在这里插入图片描述
由于规则是随机的,所有我们的一条数据都有可能存储在任何一组Redis中,例如上图我们用户查找一张名称为”a.png”的图片,由于规则是随机的,我们不确定具体是在哪一个Redis服务器上的,因此我们需要进行1、2、3、4,4次查询才能够查询到(也就是遍历了所有的Redis服务器),这显然不是我们想要的结果,有了解过的小伙伴可能会想到,随机的规则不行,可以使用类似于数据库中的分库分表规则:按照Hash值、取模、按照类别、按照某一个字段值等等常见的规则就可以出来了!好,按照我们的主题,我们就使用Hash的方式。

为Redis集群使用Hash
可想而知,如果我们使用Hash的方式,每一张图片在进行分库的时候都可以定位到特定的服务器,示意图如下:

在这里插入图片描述

Redis集群使用Hash
上图中,假设我们查找的是”a.png”,由于有4台服务器(排除从库),因此公式为hash(a.png) % 4 = 2 ,可知定位到了第2号服务器,这样的话就不会遍历所有的服务器,大大提升了性能!

使用Hash的问题
上述的方式虽然提升了性能,我们不再需要对整个Redis服务器进行遍历!但是,使用上述Hash算法进行缓存时,会出现一些缺陷,主要体现在服务器数量变动的时候,所有缓存的位置都要发生改变!

试想一下,如果4台缓存服务器已经不能满足我们的缓存需求,那么我们应该怎么做呢?很简单,多增加几台缓存服务器不就行了!假设:我们增加了一台缓存服务器,那么缓存服务器的数量就由4台变成了5台。那么原本hash(a.png) % 4 = 2 的公式就变成了 hash(a.png) % 5 =? 。假设有20个数据需要存储,在有4个redis节点的时候如下图:
在这里插入图片描述
当我们添加1个redis节点之后,数据的分布如下图所示:
在这里插入图片描述
上图中蓝色部分代表与4个节点时存储位置一致的数据,其命中率为:4/20=20%。也就是说这种情况带来的结果就是当服务器数量变动时,很多缓存的位置都要发生改变!换句话说,当服务器数量发生改变时,所有缓存在一定时间内是失效的,当应用无法从缓存中获取数据时,则会向后端数据库请求数据(还记得上一篇的《缓存雪崩》吗?)!

同样的,假设4台缓存中突然有一台缓存服务器出现了故障,无法进行缓存,那么我们则需要将故障机器移除,但是如果移除了一台缓存服务器,那么缓存服务器数量从4台变为3台,也是会出现上述的问题!

所以,我们应该想办法不让这种情况发生,但是由于上述Hash算法本身的缘故,使用取模法进行缓存时,这种情况是无法避免的,为了解决这些问题,Hash一致性算法(一致性Hash算法)诞生了!

一致性hash算法的神秘面纱
一致性Hash算法也是使用取模的方法,只是,刚才描述的取模法是对服务器的数量进行取模,而一致性Hash算法是对2^ 32-1取模,什么意思呢简单来说,一致性Hash算法将整个Hash值控件组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1取模(即哈希值是一个32位无符号整型),整个哈希环如下:
Hash环在这里插入图片描述

整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6……直到2^ 32-1,也就是说0点左侧的第一个点代表2^ 32-1, 0和2^ 32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。
下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用IP地址哈希后在环空间的位置如下:
在这里插入图片描述

redis服务器hash位置
接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器!

例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:
4个对象hash运算环的位置在这里插入图片描述

根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

一致性Hash算法的容错性和可扩展性
现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器,如下图中NodeC与NodeB之间的数据,图中受影响的是ObjectC)之间数据,其它不会受到影响,如下所示:
在这里插入图片描述在这里插入图片描述

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:
在这里插入图片描述在这里插入图片描述

此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X !一般的,在一致性Hash算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性Hash算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

Hash环的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器,其环分布如下:
在这里插入图片描述在这里插入图片描述

此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性Hash算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器IP或主机名的后面增加编号来实现。

例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:在这里插入图片描述

在这里插入图片描述
同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布,通俗点的原理如下图所示:
在这里插入图片描述在这里插入图片描述

由于虚拟节点V1、V2映射到了真实节点N1,当数据object1确定到Hash环上的位置并找到虚拟节点V2的时候,其真实位置则是位于真实节点N1上。

参考文献

https://blog.youkuaiyun.com/tianpeng341204/article/details/78963850

https://blog.youkuaiyun.com/lidiya007/article/details/53289535

https://www.cnblogs.com/wxd0108/p/5798498.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值