Redis持久化

Redis的持久化包括RDB和AOF两种方式。RDB通过定期快照保存数据,适合数据恢复但可能丢失最近修改;AOF记录每次写操作,数据完整性好但文件大,重启时执行命令恢复。RDB适合大规模恢复,AOF适合高数据完整性。在实际应用中,可以根据需求选择合适的方式,或者结合使用以平衡性能和数据安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Redis持久化

Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中 的数据库状态也会消失。所以 Redis 提供了持久化功能!

RDB(Redis DataBase)
在这里插入图片描述

在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快 照文件直接读到内存里。

Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程 都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。 这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那 RDB方式要比AOF方式更加的高效。RDB的缺点是后一次持久化后的数据可能丢失。我们默认的就是 RDB,一般情况下不需要修改这个配置

有时候在生产环境我们会将这个文件进行备份!

rdb保存的文件是dump.rdb

都是在我们的配置文件中快照中进行配置的!
在这里插入图片描述
在这里插入图片描述

触发机制
1、save的规则满足的情况下,会自动触发rdb规则
2、执行 flushall 命令,也会触发我们的rdb规则!
3、退出redis,也会产生 rdb 文件! 备份就自动生成一个 dump.rdb
在这里插入图片描述

如果恢复rdb文件!
1、只需要将rdb文件放在我们redis启动目录就可以,redis启动的时候会自动检查dump.rdb 恢复其中 的数据!
2、查看需要存在的位置

127.0.0.1:6379> config get dir
1) "dir"
2) "/usr/local/bin"
127.0.0.1:6379>

优点:
1、适合大规模的数据恢复!
2、对数据的完整性要不高!
缺点:
1、需要一定的时间间隔进程操作!如果redis意外宕机了,这个后一次修改数据就没有的了!
2、fork进程的时候,会占用一定的内容空间!!

AOF(Append Only File)

将我们的所有命令都记录下来,history,恢复的时候就把这个文件全部在执行一遍!
在这里插入图片描述
以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件 但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件 的内容将写指令从前到后执行一次以完成数据的恢复工作

Aof保存的是 appendonly.aof 文件

append
在这里插入图片描述
默认是不开启的,我们需要手动进行配置!我们只需要将 appendonly 改为yes就开启了 aof! 重启,redis 就可以生效了!

如果这个 aof 文件有错位,这时候 redis 是启动不起来的吗,我们需要修复这个aof文件
redis 给我们提供了一个工具 redis-check-aof —fix
在这里插入图片描述
重写规则说明
aof 默认就是文件的无限追加,文件会越来越大!
在这里插入图片描述

appendonly no    # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下, rdb完全够用! 
appendfilename "appendonly.aof"  # 持久化的文件的名字
# appendfsync always   # 每次修改都会 sync。消耗性能 
appendfsync everysec   # 每秒执行一次 sync,可能会丢失这1s的数据!
# appendfsync no       # 不执行 sync,这个时候操作系统自己同步数据,速度快!
# rewrite  重写,

优点:
1、每一次修改都同步,文件的完整会更加好!
2、每秒同步一次,可能会丢失一秒的数据 3、从不同步,效率高的!
缺点:
1、相对于数据文件来说,aof远远大于 rdb,修复的速度也比 rdb慢!
2、Aof 运行效率也要比 rdb慢,所以我们redis默认的配置就是rdb持久化

扩展:
1、RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储

2、AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始 的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重 写,使得AOF文件的体积不至于过大。

3、只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化

4、同时开启两种持久化方式

在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF 文件保存的数据集要比RDB文件保存的数据集要完整。
RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者 建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有 AOF可能潜在的Bug,留着作为一个万一的手段。
5、性能建议

因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够 了,只保留 save 900 1 这条规则
如果Enable AOF ,好处是在恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自 己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的后将 rewrite 过程中产 生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite 的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重 写可以改到适当的数值。
如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也 减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时倒掉,会丢失十几分钟的数据, 启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。

Redis缓存穿透和雪崩

Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一 些问题。其中,要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据 的一致性要求很高,那么就不能使用缓存。

另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。

缓存穿透(查不到)

缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于 是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒 杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了 缓存穿透。

解决方案

布隆过滤器
布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则 丢弃,从而避免了对底层存储系统的查询压力;
在这里插入图片描述
缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数 据将会从缓存中获取,保护了后端数据源;
在这里插入图片描述
但是这种方法会存在两个问题:

1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多 的空值的键;

2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于 需要保持一致性的业务会有影响。

缓存击穿(量太大,缓存过期!)

这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中 对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一 个屏障上凿开了一个洞

当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访 问数据库来查询新数据,并且回写缓存,会导使数据库瞬间压力过大。

解决方案

设置热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。

分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布 式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考 验很大。

缓存雪崩

缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机

产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商 品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都 过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波 峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
在这里插入图片描述
其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然 形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就 是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知 的,很有可能瞬间就把数据库压垮。

解决方案

redis高可用
这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续 工作,其实就是搭建的集群。(异地多活!)

限流降级
这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对 某个key只允许一个线程查询数据和写缓存,其他线程等待。

数据预热
数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数 据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让 缓存失效的时间点尽量均匀.

先丰富自己的脑袋,在丰富自己的口袋

如果需要学习更多的redis知识,关注哔站遇见狂神说
视频网站链接:

https://www.bilibili.com/video/BV1S54y1R7SB?p=35

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值