1.hadoop入门概述

Hadoop–入门

第1章 大数据概论

1.1 大数据概念

image-20201229172413218

1.2 大数据特点(4V)

1 Volume:大量

image-20201229172455731

2 Velocity-高速

image-20201229172528316

3 Variety-多样

image-20201229172600722

4 Value-低价值密度

image-20201229172628655

1.3 大数据应用场景

1大数据应用场景之物流仓储

image-20201229172814729

2大数据应用场景之零售

image-20201229172826947

3大数据应用场景之旅游

image-20201229172840891

4大数据应用场景之商品广告推荐

image-20201229172853248

5大数据应用场景之保险、金融及房产

image-20201229172932705

6大数据应用场景人工智能

image-20201229172952772

1.4 大数据部门业务流程分析

image-20201229173214500

1.5 大数据部门组织结构(重点)

image-20201229173238615

第2章 从Hadoop框架讨论大数据生态

2.1 Hadoop是什么

image-20201229173302737

2.2 Hadoop发展历史

image-20201229173333655

2.3 Hadoop三大发行版本

Hadoop三大发行版本:Apache、Cloudera、Hortonworks。

  • Apache版本最原始(最基础)的版本,对于入门学习最好。
  • Cloudera在大型互联网企业中用的较多。
  • Hortonworks文档较好。

1)Apache Hadoop

官网地址:http://hadoop.apache.org/releases.html

下载地址:https://archive.apache.org/dist/hadoop/common/

2)Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html

下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/

3)Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/

下载地址:https://hortonworks.com/downloads/#data-platform

2.4 Hadoop的优势(4高)

1)高可靠性: Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。

2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。

3)高效性:在MapReduce思想下,hadoop是并行工作的,以加快任务处理速度。

4)高容错性:能自动将失败的任务重新分配

2.5 Hadoop组成(面试重点)

image-20201229173547896

2.5.1 HDFS架构概述

image-20201229173846394

2.5.2 YARN架构概述

image-20201229173928617

2.5.3 MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce,如图2-25所示

1)Map阶段并行处理输入数据

2)Reduce阶段对Map结果进行汇总

image-20201229173948990

2.6 大数据技术生态体系

大数据技术生态体系如图:

image-20201229174022631

图中涉及的技术名词解释如下:

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

  1. 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
  2. 高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
  3. 支持通过Kafka服务器和消费机集群来分区消息。
  4. 支持Hadoop并行数据加载。

4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。

5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。

7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

10)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

11)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。

12)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

2.7 推荐系统框架图

推荐系统项目架构如图

image-20201229174145201

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值