python可以相互在同一个文件夹下面的其他的py文件,因此我们调用设计好的data_loader.py的
Pokemon类,和resnet.py的ResNet18类,
from data_loader import Pokemon
from resnet import ResNet18
下面是全部代码
import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoader
from data_loader import Pokemon
from resnet import ResNet18
batchsz = 32
picture_resize = 224
lr = 1e-3
epochs = 10
device = torch.device('cuda')
torch.manual_seed(1234)
train_db = Pokemon('pokemon', picture_resize, mode='train')
val_db = Pokemon('pokemon', picture_resize, mode='val')
test_db = Pokemon('pokemon', picture_resize, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
viz = visdom.Visdom()
def evalute(model, loader):
model.eval()
correct = 0
total = len(loader.dataset)
for x, y in loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
logits = model(x)
pred = logits.argmax(dim=1)
correct += torch.eq(pred, y).sum().float().item()
return correct / total
def main():
model = ResNet18(5).to(device)
optimizer = optim.Adam(model.parameters(),lr=lr)
criteon = nn.CrossEntropyLoss()
best_acc,best_epoch =0, 0
global_step = 0
viz.line([0],[-1], win='loss',opts = dict(title='loss'))
viz.line([0],[-1], win='val_acc', opts=dict(title='val_acc'))
for epoch in range(epochs):
for step, (x,y) in enumerate(train_loader):
#x:[b,3,224,224],y :[b]
x,y = x.to(device),y.to(device)
model.train()
logits = model(x)
loss = criteon(logits,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
viz.line([loss.item()], [global_step], win='loss', update = 'append')
global_step+=1
if epoch %1 ==0:
val_acc = evalute(model,val_loader)
if val_acc > best_acc:
best_epoch =epoch
best_acc =val_acc
torch.save(model.state_dict(),'best.mdl')
viz.line([val_acc], [global_step], win='val_acc', update='append')
print('best acc:',best_acc,'best epoch:',best_epoch)
model.load_state_dict(torch.load('best.mdl'))
print('loaded from ckpt!')
test_acc = evalute(model,test_loader)
print('test acc:', test_acc)
if __name__=='__main__':
main()