import torch
import torch
from torchvision import transforms #针对图像进行处理
from torchvision import datasets
from torch.utils.data import DataLoader #loader picture
import torch.nn.functional as F #using function rule
import torch.optim as optim
import matplotlib.pyplot as plt
# 糖尿病预测研判..................................................................................................#
#loader dataset and transform dataset as Tensore
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307, ),(0.3081, ))])
#mnist库的训练集当中有60000张图片
train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size )
#mnist库的训练集当中有10000张图片
test_dataset = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size )
#Design model and use class.................. inherit from nn.Moduel........................................................#
class Model(torch.nn.Module):
def __init__(self):
super( Model, self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(10,20,kernel_size=5)
self.pooling = torch.nn.MaxPool2d(kernel_size=2)
self.l1 = torch.nn.Linear(320,10)
def forward(self,x):
batch_size = x.size(0)
x =F.relu(self.pooling(self.conv1(x))) #[64,1,28,28]>>[64,10,24,24]>>[64,10,12,12]
x= F.relu(self.pooling(self.conv2(x))) #[64,10,12,12]>>[64,20,8,8]>>[64,20,4,4]
x = x.view(batch_size,-1) # 小批量图像的类型为 tensor 张量 (64,20,4,4)进行把每一张图像平展化,变成一维张量
x = self.l1(x) #input:320 output:10
return x
model = Model()#实例化
#Training on GPU........................................................................................................#
#device = torch.device("cuda:0"if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model.to(device) #model moving on GPU
#Construct loss functions and optimizer.................Use Torch API...................................................#
criterion = torch.nn.CrossEntropyLoss() #老师使用的是torch.nn.BCELoss(size_average=False)但是我使用这个损失太大了
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5) #lr为学习率,因为0.01太小了,我改成了0.1
#defining one training..........................................................................................................#
def train(epoch):
running_loss =0.0
for batch_idx ,data in enumerate(train_loader,0): #enumerate函数将train_loader中的元组(mini_batch(四维张量)+target(一维张量))列表化,index从0开始
inputs ,target =data
inputs,target = inputs.to(device),target.to(device) #send inputs ,traget at every step to the GPU
optimizer.zero_grad()
#forward+backward+update
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss +=loss.item() #不用item,pytorch会构建计算图
if batch_idx % 300 ==299:
print('[%d,%5d] loss:%.3f' %(epoch+1,batch_idx+1,running_loss/300))
running_loss = 0.0
#plot
x_axis = []
y_axis = []
#defining one testing..........................................................................................................#
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
images, labels = images.to(device), labels.to(device) # send images, labels at every step to the GPU
outputs = model(images)
max,predicted = torch.max(outputs.data,dim=1)
total = total+labels.size(0)
correct =correct+(predicted == labels).sum().item()
print('Accuracy on test set:%d %%' %(100*correct/total))
y_axis.append((100 * correct / total))
if __name__ == '__main__':
for epoch in range(15):
train(epoch)
test()
x_axis.append(epoch)
#drawing.....................................................................................................#
plt.figure(figsize=(7, 7), dpi=80) # 创建画布
plt.plot(x_axis,y_axis, color='r', linestyle='-') # 绘制折线图,点划线
plt.xlabel('epoch') #设置图x轴标签
plt.ylabel('Accuracy rate') #设置图y轴标签
plt.legend(["loss"],title='Accuracy&epoch',loc='upper left',fontsize=15)#设置图列
plt.show() #显示图
刘二大人《PyTorch深度学习实践》完结合集——第10课:卷积神经网络(基础篇)
最新推荐文章于 2025-05-08 09:52:31 发布