图像配准
注意,这个并没有自行实现SIFT描绘子,也没有自行实现图像配准,只是调用的opencv的函数。
备注:这里的opencv版本为:4.5.3
代码
void Test_Harris_Register(Mat &image1, Mat &image2)
{
//提取特征点方法
//cv::Ptr<cv::SIFT> sift = cv::SIFT::Creat(); //OpenCV 4.4.0 及之后版本
cv::Ptr<cv::SIFT> detector = cv::SIFT::create(100);
//用来存放的特征点信息的动态数组
std::vector<cv::KeyPoint> keyPoint1, keyPoint2;
//提取特征点信息
detector->detect(image1, keyPoint1);
detector->detect(image2, keyPoint2);
//画特征点
cv::Mat keyPointImage1;
cv::Mat keyPointImage2;
drawKeypoints(image1, keyPoint1, keyPointImage1, cv::Scalar::all(-1), cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
drawKeypoints(image2, keyPoint2, keyPointImage2, cv::Scalar::all(-1), cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
//显示窗口
cv::namedWindow("KeyPoints of imageL");
cv::namedWindow("KeyPoints of imageR");
//显示特征点
cv::imshow("KeyPoints of imageL", keyPointImage1);
cv::imshow("KeyPoints of imageR", keyPointImage2);
//特征点匹配
cv::Mat desp1, desp2;
//提取特征点并计算特征描述子
detector->detectAndCompute(image1, cv::Mat(), keyPoint1, desp1);
detector->detectAndCompute(image2, cv::Mat(), keyPoint2, desp2);
//用来存放的matches的动态数组
std::vector<cv::DMatch> matches;
//如果采用flannBased方法 那么 desp通过orb的到的类型不同需要先转换类型
if (desp1.type() != CV_32F || desp2.type() != CV_32F)
{
desp1.convertTo(desp1, CV_32F);
desp2.convertTo(desp2, CV_32F);
}
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("FlannBased");
matcher->match(desp1, desp2, matches);
//计算特征点距离的最大值
double maxDist = 0;
for (int i = 0; i < desp1.rows; i++)
{
double dist = matches[i].distance;
if (dist > maxDist)
maxDist = dist;
}
//挑选好的匹配点
std::vector< cv::DMatch > good_matches;
for (int i = 0; i < desp1.rows; i++)
{
if (matches[i].distance < 0.6*maxDist)
{
good_matches.push_back(matches[i]);
}
}
cv::Mat imageOutput;
cv::drawMatches(image1, keyPoint1, image2, keyPoint2, good_matches, imageOutput);
cv::namedWindow("picture of matching");
cv::imshow("picture of matching", imageOutput);
}
输出
需要配准的图像

