import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
batch_size = 50
kernel_size = 5
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
path = "resources/data/"
train_datasets = datasets.CIFAR10(
root=path,
train=True,
download=True,
transform=transform
)
train_loader = DataLoader(
train_datasets,
shuffle=True,
batch_size=batch_size
)
test_datasets = datasets.CIFAR10(
root=path,
train=False,
download=True,
transform=transform
)
test_loader = DataLoader(
test_datasets,
shuffle=False,
batch_size=batch_size
)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 10, kernel_size=kernel_size)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=kernel_size)
self.pooling = torch.nn.MaxPool2d(2)
self.linear1 = torch.nn.Linear(500, 128)
self.linear2 = torch.nn.Linear(128, 64)
self.linear3 = torch.nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = F.relu(self.linear1(x.view(x.size(0), -1)))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print("[%d, %5d] loss: %.3f" % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy on test set:%d%%"%(100*correct/total))
if __name__ == "__main__":
for epoch in range(20):
train(epoch)
test()