首先导入sklearn库中的数据集
```python
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.metrics import accuracy_score #调用监控指标的度量类库Metrics
#加载数据集,是一个字典,类似Java中的map
lris_df ,label= datasets.load_iris(return_X_y=True)
#这里已经知道了分3类,其他分类这里的参数需要调试
model = KMeans(n_clusters=3,random_state=3,n_init=10)
#训练模型
model.fit(lris_df)
#预测全部150条数据
all_predictions = model.predict(lris_df.data)
#但上面只是分了三类,具体类标签与原label不同,像原label是0,1,2,而预测的为1,0,2,故这里将预测的1和0类标签互换,来计算一下分类正确率
all_predictions[all_predictions == 0] = 3
all_predictions[all_predictions == 1] = 0
all_predictions[all_predictions == 3] = 1
accuracy = accuracy_score(label,all_predictions)
print("分类正确率=",accuracy)