K - How many prime numbers

本文介绍了一种通过编程实现的素数计数方法。输入一系列正整数,算法将判断并统计其中的素数数量。核心部分使用了sqrt函数进行优化,避免了不必要的计算,提高了效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K - How many prime numbers

Give you a lot of positive integers, just to find out how many prime numbers there are.
Input
There are a lot of cases. In each case, there is an integer N representing the number of integers to find. Each integer won’t exceed 32-bit signed integer, and each of them won’t be less than 2.
Output
For each case, print the number of prime numbers you have found out.
Sample Input

3
2 3 4

Sample Output

2
#include <iostream>
#include <math.h>
#include <stdio.h>
using namespace std;

int xuan(int a)
{
    int i;
    int t=(int)sqrt(a);
    for(i=2; i<=t; i++)
    {
        if(a%i==0)
        {
            return 0;
        }
    }
    return 1;
}

int main()
{
    int a,b,i;
    int sum;
    while(scanf("%d",&a)!=EOF)
    {
        sum=0;
        for(i=1; i<=a; i++)
        {
            scanf("%d",&b);
            if(b==2)
            {
                sum=sum+1;
            }
            else
            {
                if(b%2==1)
                {
                    if(xuan(b)==1)
                    {
                        sum=sum+1;
                    }
                }
            }
        }
        cout << sum << endl;
    }
    return 0;
}

文件1:第一行 {"index": 0, "prompt": {"data": ["Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}."], "system_prompt": null, "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}}, "tags": ["en"], "categories": ["DeepSeekDistill", "Math"], "task_type": "math", "weight": 0.3333333333333333, "dataset_name": "math_500", "subset_name": "default"} 文件2:第281行 {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"} 写一个脚本依据problem字段的值查找两个文件中的所有问题是否一致,对比两个文件中的problem是否相同,两个文件中的该部分内容并不在同一行,如果不一致输出不一样的内容并将打印内容输出为一个文件
最新发布
08-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZ --瑞 hopeACMer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值