Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
InputThe input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
Input
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. “-1” installation means no solution for that case.
Sample Input
3 2
1 2
-3 1
2 1
1 2
0 2
0 0
Sample Output
Case 1: 2
Case 2: 1
题目大意
有多个测试样例每一个测试样例输入n和d表示后面有n个岛屿,和每一个雷达的覆盖半径
每一个岛屿用其坐标(x,y)表示,输入时没有括号和逗号,雷达只能放置在x坐标轴上,求用最少的雷达覆盖所有的岛屿,输出…(无法解决输出-1)
当然还要判断d是否大于0,不大于0当然无法解决…
AC代码(用vector)
#include<algorithm>
#include<iostream>
#include<math.h>
#include<vector>
#include<stdio.h>
using namespace std;
struct node
{
double left;
double right;
};
bool cmp(node a,node b)
{
if(a.right!=b.right)
return a.right<b.right;
return a.left<b.left;
}
int main()
{
int n,t=0;
double d,x,y;
vector<node> region;
//vector<node>::iterator it;
while(scanf("%d %lf",&n,&d))
{
if(n==0&&d==0)
break;
++t;
node now;
bool judge=false;
for(int i=0; i<n; ++i)
{
scanf("%lf %lf",&x,&y);
if(y>d)
{
judge=true;
}
else
{
now.left=x-sqrt(d*d-y*y);
now.right=x+sqrt(d*d-y*y);
region.push_back(now);
}
}
if(judge||d<0)
{
printf("Case %d: -1\n",t);
continue;
}
sort(region.begin(),region.end(),cmp);
int num=1;
if(n>1)
for(int i=1,j=0; i<n; ++i)
{
if(region[i].left>region[j].right)
{
++num;
j=i;
}
}
printf("Case %d: %d\n",t,num);
region.clear();
}
return 0;
}
AC代码(用数组)
#include<cstdio>
#include<math.h>
#include<algorithm>
using namespace std;
struct node
{
double be;
double en;
};
double cmp(node a, node b)
{
if(a.en == b.en)
return a.be > b.be;
return a.en < b.en;
}
node wo[10000];
int main()
{
int n;
int code=0;
double d;
while(scanf("%d %lf",&n,&d))
{
int error=0;
if(n==0&&d==0)
break;
code++;
for(int i=0; i<n; i++)
{
double x,y;
scanf("%lf %lf",&x,&y);
if(y>d)
error=1;
else
{
wo[i].be=x-sqrt(d*d-y*y);
wo[i].en=x+sqrt(d*d-y*y);
}
}
if(error==1||d<0)
{
printf("Case %d: -1\n",code);
continue;
}
sort(wo,wo+n,cmp);
int num=1;
if(n>1)
{
for(int i=1,j=0; i<n; i++)
{
if(wo[i].be>wo[j].en)
{
j=i;
num++;
}
}
}
printf("Case %d: %d\n",code,num);
}
return 0;
}