【24年新算法】KO-LSSVM,K-means优化算法优化最小二乘支持向量机回归预测,KO-LSSVM回归预测,多变量输入模型。K-means优化算法(K-means Optimizer, KO

【24年新算法】KO-LSSVM,K-means优化算法优化最小二乘支持向量机回归预测,KO-LSSVM回归预测,多变量输入模型。

K-means优化算法(K-means Optimizer, KO)是一种新型的元启发式算法(智能优化算法),灵感来源于使用K-means算法建立聚类区域的质心向量。不同于以往的动物园算法,该算法原理新颖,在优化算法中巧妙引入聚类算法,该成果由Hoang-Le Minh于2022年9月发表在SCI一区顶刊《Knowledge-Baesd Systems》上!

评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。

优化EMD/VMD/ICCEMD/SVM/LSSVM/ELM/BP/KELM/RF/DELM/LSTM/BILSTM/GRU/HKELM/XGboost/PNN/CNN/VMD/ICEEMDAN/组合模型CNN-SVM/CNN-LSTM/CNN-GRU/CNN-BiLSTM/LSTM-Attention/GRU-Attention/CNN-LSTM-Attention/TCN/TCN-LSTM/TCN-BILSTM/TCN-GRU/TCN-BIGRU/BITCN/BITCN-LSTM/BITCN-BILSTM/BITCN-GRU/BITCN-BIGRU/Transformer/Transformer-LSTM/Transformer-BILSTM/Transformer-GRU/Transformer-BIGRU等等多种分类/回归/时序/分解/区间预测/多输入多输出/聚类/组合预测模型,具体私信。

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

%% 导入数据

res = xlsread('数据集.xlsx');

%% 数据分析

num_size = 0.75; % 训练集占数据集比例

outdim = 1; % 最后一列为输出

num_samples = size(res, 1); % 样本个数

num_train_s = round(num_size * num_samples); % 训练集样本个数

f_ = size(res, 2) - outdim; % 输入特征维度

flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%% 划分训练集和测试集

P_train = res(1: num_train_s, 1: f_)';

T_train = res(1: num_train_s, f_ + 1: end)';

P_test = res(num_train_s + 1: end, 1: f_)';

T_test = res(num_train_s + 1: end, f_ + 1: end)';

%% 划分训练集和测试集

M = size(P_train, 2);

N = size(P_test, 2);

% 获取 https://mbd.pub/o/DDR1

%% 数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);

p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);

t_test = mapminmax('apply', T_test, ps_output);

t_test = mapminmax('apply', T_test, ps_output);

%% 转置以适应模型

p_train = p_train'; p_test = p_test';

t_train = t_train'; t_test = t_test';

智能算法及其模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值