昇思25天学习打卡营第03天|数据集 Dataset

在这里插入图片描述

一、什么是数据集 Dataset?

数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。

MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。mindspore.dataset提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。

此外MindSpore的领域开发库也提供了大量的预加载数据集,可以使用API一键下载使用。本教程将分别对不同的数据集加载方式、数据集常见操作和自定义数据集方法进行详细阐述。

环境准备:

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt

二、数据集加载

我们使用Mnist数据集作为样例,介绍使用mindspore.dataset进行加载的方法。

mindspore.dataset提供的接口仅支持解压后的数据文件,因此我们使用download库下载数据集并解压。

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

在这里插入图片描述压缩文件删除后,直接加载,可以看到其数据类型为MnistDataset。

train_dataset = MnistDataset("MNIST_Data/train", shuffle=False)
print(type(train_dataset))

输出:

<class 'mindspore.dataset.engine.datasets_vision.MnistDataset'>

三、数据集迭代

数据集加载后,一般以迭代方式获取数据,然后送入神经网络中进行训练。我们可以用create_tuple_iteratorcreate_dict_iterator接口创建数据迭代器,迭代访问数据。

访问的数据类型默认为Tensor;若设置output_numpy=True,访问的数据类型为Numpy

下面定义一个可视化函数,迭代9张图片进行展示。

def visualize(dataset):
	# 定义图片的尺寸
    figure = plt.figure(figsize=(4, 4))
    # 定义行列变量
    cols, rows = 3, 3

	# 定义图片的间距
    plt.subplots_adjust(wspace=0.5, hspace=0.5)

    for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):
        figure.add_subplot(rows, cols, idx + 1)
        # 设置子图的标题为标签的整数值
        plt.title(int(label))
        # 关闭子图的坐标轴
        plt.axis("off")
        # 显示图像 在Python中,使用matplotlib库进行数据可视化时,cmap参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值