剑指 Offer 07. 重建二叉树
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return help(preorder,0,preorder.size()-1,inorder,0,inorder.size()-1);
}
TreeNode* help(vector<int>& preorder,int preleft,int preright, vector<int>& inorder,int inleft,int inright){
if(preleft>preright) return nullptr;
int i=inleft;
for(;i<=inright;i++){
if(inorder[i]==preorder[preleft])
break;
}
TreeNode* root=new TreeNode(preorder[preleft]);
root->left=help(preorder,preleft+1,i-inleft+preleft,inorder,inleft,i-1);
root->right=help(preorder,i-inleft+preleft+1,preright,inorder,i+1,inright);
return root;
}
};
121. 买卖股票的最佳时机
我的 最小买
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size()<=1) return 0;
int min=prices[0];int ret=0;
for(int i=1;i<prices.size();i++){
if(prices[i]>min){
ret=max(ret,prices[i]-min);
}else{
min=prices[i];
}
}
return ret;
}
};
122. 买卖股票的最佳时机 II
贪心:每一步局部解组合=全局的最优解
没有T+1,次数,手续费
每一天能赚就赚,否则就错过赚钱的机会了,所以赚就赚。
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size()<=1) return 0;
int ret=0;
int min=prices[0];
for(int i=1;i<prices.size();i++){
if(prices[i]>min)
ret+=prices[i]-min;
min=prices[i];
}
return ret;
}
};
188. 买卖股票的最佳时机 IV
k次限制,三维动态规划
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if(prices.size()<=1) return 0;
int n=prices.size();
vector<vector<vector<int>>> dp(n,vector<vector<int>>(k+1,vector<int>(2,0)));
dp[0][0][1]=-prices[0];
for(int i=1;i<=k;i++){
dp[0][i][0]=dp[0][i][1]=INT_MIN/2;
}
for(int i=1;i<n;i++){
for(int j=0;j<=k;j++){
dp[i][j][0]=max(dp[i-1][j][0],j==0?INT_MIN/2:dp[i-1][j-1][1]+prices[i]);
dp[i][j][1]=max(dp[i-1][j][1],dp[i-1][j][0]-prices[i]);
}
}
int ret=0;
for(int i=0;i<=k;i++){
ret=max(ret,dp[n-1][i][0]);
}
return ret;
}
};
剑指 Offer 12. 矩阵中的路径
class Solution {
public:
int rows, cols;
bool exist(vector<vector<char>>& board, string word) {
rows = board.size();
cols = board[0].size();
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
if(dfs(board, word, i, j, 0)) return true;
}
}
return false;
}
bool dfs(vector<vector<char>>& board, string word, int i, int j, int k) {
if(i >= rows || i < 0 || j >= cols || j < 0 || board[i][j] != word[k]) return false;
if(k == word.size() - 1) return true; //全部匹配
board[i][j] = '\0';
bool res = dfs(board, word, i + 1, j, k + 1) || dfs(board, word, i - 1, j, k + 1) ||
dfs(board, word, i, j + 1, k + 1) || dfs(board, word, i , j - 1, k + 1);
board[i][j] = word[k];
return res;
}
};
剑指 Offer 13. 机器人的运动范围
class Solution {
public:
int get(int m){
int ret=0;
while(m!=0){
ret+=m%10;
m=m/10;
}
return ret;
}
int movingCount(int m, int n, int k) {
vector<vector<bool>> used(m,vector<bool>(n,false));
return help(m,n,k,0,0,used);
}
int help(int m, int n, int k,int i,int j,vector<vector<bool>>& used){
if(i<0 || i>=m || j<0 || j>=n || used[i][j]==true || get(i)+get(j)>k) return 0;
used[i][j]=true;//不用撤销
int ret=1+help(m,n,k,i-1,j,used)+help(m,n,k,i+1,j,used)+help(m,n,k,i,j-1,used)+help(m,n,k,i,j+1,used);
return ret;
}
};
class Solution {
public:
int cuttingRope(int n) {
vector<int> dp(n+1,0);
dp[1]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<i;j++)
dp[i]=max(dp[i],dp[i-j]*j);
}
return dp[n];
}
};