五:
对于区间开方操作,维护区间最大值,若区间最小值小于等于1,那么就不需要进行操作 用add【】数组记录
//第一行输入一个数字 n。
//
//第二行输入 n 个数字,第 i 个数字为 ai,以空格隔开。
//
//接下来输入 n 行询问,每行输入四个数字 opt l r c,以空格隔开。
//
//若 opt=0,表示将位于 [l,r] 的之间的数字都开方
//
//若 opt=1,表示询问 [l,r] 的所有数字的和
#pragma GCC optimize("Ofast")
#pragma comment(linker, "/STACK:102400000,102400000")
#pragma GCC target(sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx)
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;
#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X)
#define S_1(x) scan_d(x)
#define S_2(x,y) scan_d(x),scan_d(y)
#define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
typedef long long LL;
typedef pair <int, int> ii;
const int INF=(1<<31);
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]= {-1,0,1,0,1,-1,-1,1};
const int dy[]= {0,1,0,-1,-1,1,-1,1};
const int maxn=1e6+10;
const int maxx=1e3+10;
const double EPS=1e-8;
const double eps=1e-8;
const int mod=1e9+7;
template<class T>inline T min(T a,T b,T c) {
return min(min(a,b),c);
}
template<class T>inline T max(T a,T b,T c) {
return max(max(a,b),c);
}
template<class T>inline T min(T a,T b,T c,T d) {
return min(min(a,b),min(c,d));
}
template<class T>inline T max(T a,T b,T c,T d) {
return max(max(a,b),max(c,d));
}
template <class T>
inline bool scan_d(T &ret) {
char c;
int sgn;
if (c = getchar(), c == EOF) {
return 0;
}
while (c != '-' && (c < '0' || c > '9')) {
c = getchar();
}
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9') {
ret = ret * 10 + (c - '0');
}
ret *= sgn;
return 1;
}
inline bool scan_lf(double &num) {
char in;
double Dec=0.1;
bool IsN=false,IsD=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();
if(in=='-') {
IsN=true;
num=0;
} else if(in=='.') {
IsD=true;
num=0;
} else num=in-'0';
if(!IsD) {
while(in=getchar(),in>='0'&&in<='9') {
num*=10;
num+=in-'0';
}
}
if(in!='.') {
if(IsN) num=-num;
return true;
} else {
while(in=getchar(),in>='0'&&in<='9') {
num+=Dec*(in-'0');
Dec*=0.1;
}
}
if(IsN) num=-num;
return true;
}
void Out(LL a) {
if(a < 0) {
putchar('-');
a = -a;
}
if(a >= 10) Out(a / 10);
putchar(a % 10 + '0');
}
void print(LL a) {
Out(a),puts("");
}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;
int n,block,l[maxn],r[maxn],num,belong[maxn];
LL a[maxn],add[maxn],sum[maxn];
//vector<int>seg[1005];
bool check(int i) {
for(int j=l[i]; j<=r[i]; j++)
if(a[j]!=1&&a[j]!=0) return 0;
return 1;
}
void build() {
block=sqrt(n);
num=n/block;
if(n%block) num++;
for(int i=1; i<=num; i++)
l[i]=(i-1)*block+1,r[i]=i*block;//块左端点 块右端点
r[num]=n;
for(int i=1; i<=n; i++) {
belong[i]=(i-1)/block+1;//i属于哪一块
}
for(int i=1; i<=num; i++)
for(int j=l[i]; j<=r[i]; j++) {
sum[i]+=a[j];
}
for(int i=1; i<=belong[n]; i++)
if(check(i)) add[i]=1;
}
LL query(int x,int y) {
LL ans=0;
for(int i=x; i<=min(y,r[belong[x]]); i++)
ans+=a[i];
if(belong[x]!=belong[y]) {
for(int i=l[belong[y]]; i<=y; i++)
ans+=a[i];
}
for(int i=belong[x]+1; i<belong[y]; i++) {
ans+=sum[i];
}
return ans;
}
void update(int x,int y) {
for(int i=x; i<=min(y,r[belong[x]]); i++)
sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
if(check(belong[x])) add[belong[x]]=1;
if(belong[x]!=belong[y]) {
for(int i=l[belong[y]]; i<=y; i++)
sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
if(check(belong[y])) add[belong[y]]=1;
}
for(int i=belong[x]+1; i<belong[y]; i++) {
if(add[i]==1) continue;
for(int j=l[i]; j<=r[i]; j++)
sum[i]-=a[j],a[j]=sqrt(a[j]),sum[i]+=a[j];
if(check(i)) add[i]=1;
}
}
void solve() {
s_1(n);
FOR(1,n,i) {
S_1(a[i]);
}
build();
FOR(1,n,i) {
LL opt,x,y,c;
S_1(opt);
S_3(x,y,c);
if(opt==1) {
print(query(x,y));
} else {
update(x,y);
}
}
}
int main() {
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
int t=1;
//init();
//s_1(t);
for(int cas=1; cas<=t; cas++) {
//printf("Case #%d: ",cas);
solve();
}
}