网络战争
题意
思路
先分数规划,转换为在图中跑最小割,这个题的边权可能为负数,因此我们把负数边都选上,然后在正数边权中跑最小割。每次二分分数规划mid值,我们把f[] 流量数组处理就行了
代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110, M = 810, INF = 1e8;
const double eps = 1e-8;
int n, m, S, T;
int h[N], e[M], w[M], ne[M], idx;
double f[M];
int q[N], d[N], cur[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
e[idx] = a, w[idx] = c, ne[idx] = h[b], h[b] = idx ++ ;
}
bool bfs()
{
int hh = 0, tt = 0;
memset(d, -1, sizeof d);
q[0] = S, d[S] = 0, cur[S] = h[S];
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int ver = e[i];
if (d[ver] == -1 && f[i] > 0)
{
d[ver] = d[t] + 1;
cur[ver] = h[ver];
if (ver == T) return true;
q[ ++ tt] = ver;
}
}
}
return false;
}
double find(int u, double limit)
{
if (u == T) return limit;
double flow = 0;
for (int i = cur[u]; ~i && flow < limit; i = ne[i])
{
cur[u] = i;
int ver = e[i];
if (d[ver] == d[u] + 1 && f[i] > 0)
{
double t = find(ver, min(f[i], limit - flow));
if (t < eps) d[ver] = -1;
f[i] -= t, f[i ^ 1] += t, flow += t;
}
}
return flow;
}
double dinic(double mid)
{
double res = 0;
for (int i = 0; i < idx; i += 2)
if (w[i] <= mid)
{
res += w[i] - mid;
f[i] = f[i ^ 1] = 0;
}
else f[i] = f[i ^ 1] = w[i] - mid;
double r = 0, flow;
while (bfs()) while (flow = find(S, INF)) r += flow;
return r + res;
}
int main()
{
scanf("%d%d%d%d", &n, &m, &S, &T);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
double l = 0, r = 1e7;
while (r - l > eps)
{
double mid = (l + r) / 2;
if (dinic(mid) < 0) r = mid;
else l = mid;
}
printf("%.2lf\n", r);
return 0;
}