分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
大数据竞赛平台——Kaggle 入门篇
这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!
1、Kaggle简介






2、竞赛项目解题全过程
(1)知识准备
(2)Digit Recognition解题过程
下面我将采用kNN算法来解决Kaggle上的这道Digit Recognition训练题。上面提到,我之前用kNN算法实现过,这里我将直接copy之前的算法的核心代码,核心代码是关于kNN算法的主体实现,我不再赘述,我把重点放在处理数据上。
以下工程基于Python、numpy
- 获取数据
从”Get the Data“下载以下三个csv文件:
- 分析train.csv数据
train.csv是训练样本集,大小42001*785,第一行是文字描述,所以实际的样本数据大小是42000*785,其中第一列的每一个数字是它对应行的label,可以将第一列单独取出来,得到42000*1的向量trainLabel,剩下的就是42000*784的特征向量集trainData,所以从train.csv可以获取两个矩阵trainLabel、trainData。
下面给出代码,另外关于如何从csv文件中读取数据,参阅:csv模块的使用
def loadTrainData(): l=[] with open('train.csv') as file: lines=csv.reader(file) for line in lines: l.append(line) #42001*785 l.remove(l[0]) l=array(l) label=l[:,0] data=l[:,1:] return nomalizing(toInt(data)),toInt(label)
这里还有两个函数需要说明一下,toInt()函数,是将字符串转换为整数,因为从csv文件读取出来的,是字符串类型的,比如‘253’,而我们接下来运算需要的是整数类型的,因此要转换,int(‘253’)=253。toInt()函数如下:
def toInt(array): array=mat(array) m,n=shape(array) newArray=zeros((m,n)) for i in xrange(m): for j in xrange(n): newArray[i,j]=int(array[i,j]) return newArray
nomalizing()函数做的工作是归一化,因为train.csv里面提供的表示图像的数据是0~255的,为了简化运算,我们可以将其转化为二值图像,因此将所有非0的数字,即1~255都归一化为1。nomalizing()函数如下:
def nomalizing(array): &nbs