2023年安徽省“漏洞挖掘与防范”决赛-部分wp

本科组

1837

MTEgMTExIDAwMCAwMCAwMTExMSAwMDAgMDAxMCAwMDEgMTA

base64 ->转莫斯

flag{mosi1sfun}

rsa

e很大,考虑wiener

import gmpy2
import libnum

def continuedFra(x, y):
    """计算连分数
    :param x: 分子
    :param y: 分母
    :return: 连分数列表
    """
    cf = []
    while y:
        cf.append(x // y)
        x, y = y, x % y
    return cf
def gradualFra(cf):
    """计算传入列表最后的渐进分数
    :param cf: 连分数列表
    :return: 该列表最后的渐近分数
    """
    numerator = 0
    denominator = 1
    for x in cf[::-1]:
        # 这里的渐进分数分子分母要分开
        numerator, denominator = denominator, x * denominator + numerator
    return numerator, denominator
def solve_pq(a, b, c):
    """使用韦达定理解出pq,x^2−(p+q)∗x+pq=0
    :param a:x^2的系数
    :param b:x的系数
    :param c:pq
    :return:p,q
    """
    par = gmpy2.isqrt(b * b - 4 * a * c)
    return (-b + par) // (2 * a), (-b - par) // (2 * a)
def getGradualFra(cf):
    """计算列表所有的渐近分数
    :param cf: 连分数列表
    :return: 该列表所有的渐近分数
    """
    gf = []
    for i in range(1, len(cf) + 1):
        gf.append(gradualFra(cf[:i]))
    return gf

def wienerAttack(e, n):
    """
    :param e:
    :param n:
    :return: 私钥d
    """
    cf = continuedFra(e, n)
    gf = getGradualFra(cf)
    for d, k in gf:
        if k == 0: continue
        if (e * d - 1) % k != 0:
            continue
        phi = (e * d - 1) // k
        p, q = solve_pq(1, n - phi + 1, n)
        if p * q == n:
            return d
n=0x1fb18fb44f44
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值