【LeetCode】每日一题 483. 最小好进制【数学;二项式定理】

本文介绍了一种算法,用于找出一个数n的最小优良基数k。通过数学推导确定了k进制下的数值范围,并利用二项式定理计算出k的具体值。最后,通过不断缩小m的范围来枚举k,直到找到符合条件的最小k。

1.题目链接
点击这里

2.解题思路
首先,n在k进制下展开:
n=k ^ 0 + k ^ 1 + k ^ 2 + …+ k ^ m > k ^ m;
展开式可以看作一个首项为1,公比为k的等比数列的求和,
(1 - k^m) / (1 - k) = n ;
求出m为 m = kn - n + 1 < kn ;
那么m的上界就确定为 m < log_k(n) ;

根据二项式定理:
(1+k) ^ m > n > k ^ m ;
那么有
k < pow(n,1/m) < k+1 ;
而因为k是整数,所以k实际上就是pow(n,1/m)的整数部分。
这样就可以通过m计算出k;

现在,从最小的进制开始,不断通过m的缩小枚举k,计算出k进制下的值,与n进行比较。最大的k是n-1,即n-1进制下的n为n-1。

3.代码

class Solution {
public:
    string smallestGoodBase(string n) {

        typedef long long LL;
        LL val=stol(n);

        int mMax=(float)(log(val)/log(2));
        for(int m=mMax;m>1;m--){
            int k=pow(val,1.0/m);
            LL sum=1,mul=1;
            for(int i=0;i<m;i++){
                mul*=k;
                sum+=mul;
            }
            if(sum==val) return to_string(k);
            
        }

        return to_string(val-1);

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值