文中提出使用mlpconv网络层替代传统的convolution层。mlp层实际上是卷积加传统的mlp(多层感知器),因为convolution是线性的,而mlp是非线性的,后者能够得到更高的抽象,泛化能力更强。在跨通道(cross channel,cross feature map)情况下,mlpconv等价于卷积层+1×1卷积层,所以此时mlpconv层也叫cccp层(cascaded cross channel parametric pooling)。
CNN网络中不使用FC层(全连接层)
文中提出使用Global Average Pooling取代最后的全连接层,因为全连接层参数多且易过拟合。做法即移除全连接层,在最后一层(文中使用mlpconv)层,后面加一层Average Pooling层。
public class NetWork {
public static boolean isconn(Context context) {
ConnectivityManager service= (ConnectivityManager) context.getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo info = service.getActiveNetworkInfo();
if (info != null && info.isConnected()) {
return true;
} else {
return false;
}
}
}