18-The Triangle-水

本文介绍了一个寻找三角形网格中从顶部到底部的最大路径和的问题。通过动态规划的方法,递推计算每一步到达的位置能获得的最大累积数值。最终输出的是到达底部任一位置的最大可能累积值。

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

输入描述:

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

输出描述:

Your program is to write to standard output. The highest sum is written as an integer.

样例输入:

复制

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

样例输出:

30

提示:

没有提示哦

来源:

未知

上传者:苗栋栋

思路:从上往下递推

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm> 
using namespace std;
int a[109][109],dp[108][108];
int main()
{
	int n;
	scanf("%d",&n);
	for(int i = 1;i <= n;++i)
	{
		for(int j = 1;j <= i;++j)
		{
			scanf("%d",&a[i][j]);
			dp[i][j] = a[i][j];
		}
	}
	int max1 = 0;
	for(int i = 1;i <= n;++i)
	{
		for(int j = 1;j <= i;++j)
		{
			dp[i][j] = max(dp[i-1][j]+a[i][j],dp[i-1][j-1]+a[i][j]);
			max1 = max(max1,dp[i][j]);
		}
	}
	printf("%d\n",max1);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-lyslyslys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值