引言
哈喽,各位小可爱,好久不见啦,小编最近比较忙,今天抽出时间来跟各位小可爱聊一聊python批量出来Excel异常数据相关的内容。
理论
在我们处理数据过程中难免会遇到异常值的情况,这个时候如果能够对长时间序列的Excel文件进行批处理可谓是省心又省力鸭,下面一起来学习吧。我们尝试用盖帽法进行处理,用第99百分位数替换前百分之一的异常高值,代码如下:
import xlrd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import numpy as np
path='Excel文件路径'
excel_features=os.listdir(path)#获取文件夹下的文件名称
out_path='处理后的文件输出路径'
#print(excel_features)
for excel_feature in excel_features:
path_excel_feature=str(path+'/'+excel_feature)
out_path_excel_feature=str(out_path+'/'+excel_feature)
#print(out_path_excel_feature)
#print(path_excel_feature)
df_excel_feature=pd.read_excel(path_excel_feature)
#print(df_excel_feature)
#print('before \n',df_excel_feature['nh3'].describe())
NH3=df_excel_feature['nh3']
NH3_quantile99=NH3.quantile(0.99)#获取NH3列的99百分位数
print(NH3_quantile99)
df_excel_feature.loc[NH3>NH3_quantile99,'nh3']=NH3_quantile99#盖帽法处理异常值,异常值用995分位数进行替换
df_excel_feature.to_excel(out_path_excel_feature,index=False)#处理后的DataFrame保存到Excel表格
#print('after \n', df_excel_feature['nh3'].describe())
print(excel_feature,'is cleaned successfull!')