python实验

kmeans

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
data = X[:,[1,3]] # 为了便于可视化,只取两个维度
plt.scatter(data[:,0],data[:,1]);
def distance(p1,p2):
    """
    Return Eclud distance between two points.
    p1 = np.array([0,0]), p2 = np.array([1,1]) => 1.414
    """
    tmp = np.sum((p1-p2)**2)
    return np.sqrt(tmp)
def rand_center(data,k):
    """Generate k center within the range of data set."""
    n = data.shape[1] # features
    centroids = np.zeros((k,n)) # init with (0,0)....
    for i in range(n):
        dmin, dmax = np.min(data[:,i]), np.max(data[:,i])
        centroids[:,i] = dmin + (dmax - dmin) * np.random.rand(k)
    return centroids
def rand_center(data,k):
    """Generate k center within the range of data set."""
    n = data.shape[1] # features
    centroids = np.zeros((k,n)) # init with (0,0)....
    for i in range(n):
        dmin, dmax = np.min(data[:,i]), np.max(data[:,i])
        centroids[:,i] = dmin + (dmax - dmin) * np.random.rand(k)
    return centroids


def kmeans(data, k=3):
    def _distance(p1, p2):
        """
        Return Eclud distance between two points.
        p1 = np.array([0,0]), p2 = np.array([1,1]) => 1.414
        """
        tmp = np.sum((p1 - p2) ** 2)
        return np.sqrt(tmp)

    def _rand_center(data, k):
        """Generate k center within the range of data set."""
        n = data.shape[1]  # features
        centroids = np.zeros((k, n))  # init with (0,0)....
        for i in range(n):
            dmin, dmax = np.min(data[:, i]), np.max(data[:, i])
            centroids[:, i] = dmin + (dmax - dmin) * np.random.rand(k)
        return centroids

    def _converged(centroids1, centroids2):

        # if centroids not changed, we say 'converged'
        set1 = set([tuple(c) for c in centroids1])
        set2 = set([tuple(c) for c in centroids2])
        return (set1 == set2)

    n = data.shape[0]  # number of entries
    centroids = _rand_center(data, k)
    label = np.zeros(n, dtype=np.int)  # track the nearest centroid
    assement = np.zeros(n)  # for the assement of our model
    converged = False

    while not converged:
        old_centroids = np.copy(centroids)
        for i in range(n):
            # determine the nearest centroid and track it with label
            min_dist, min_index = np.inf, -1
            for j in range(k):
                dist = _distance(data[i], centroids[j])
                if dist < min_dist:
                    min_dist, min_index = dist, j
                    label[i] = j
            assement[i] = _distance(data[i], centroids[label[i]]) ** 2

        # update centroid
        for m in range(k):
            centroids[m] = np.mean(data[label == m], axis=0)
        converged = _converged(old_centroids, centroids)
    return centroids, label, np.sum(assement)


best_assement = np.inf
best_centroids = None
best_label = None

for i in range(10):
    centroids, label, assement = kmeans(data,3)
    if assement < best_assement:
        best_assement = assement
        best_centroids = centroids
        best_label = label

data0 = data[best_label==0]
data1 = data[best_label==1]
data2=data[best_label==1]

fig, (ax1,ax2) = plt.subplots(1,2,figsize=(12,5))
ax1.scatter(data[:,0],data[:,1],c='c',s=30,marker='o')
ax2.scatter(data0[:,0],data0[:,1],c='r')
ax2.scatter(data1[:,0],data1[:,1],c='c')
ax2.scatter(data2[:,0],data2[:,1],c='y')
ax2.scatter(centroids[:,0],centroids[:,1],c='b',s=120,marker='o')
plt.show()






knn

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 14 11:49:49 2018

@author: Robo Crio
"""

class KNNClassify():

    def __init__(self,k=5, p=2):

        self.k = k
        self.p = p
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict_y(self, X_test):

        m = self._X_train.shape[0]
        y_pre = []
        for intX in X_test:
            minus_mat = np.fabs(np.tile(intX, (m, 1)) - self._X_train)       # 将新的实例复制成m行1列,并进行相减
            sq_minus_mat = minus_mat ** self.p
            sq_distance = sq_minus_mat.sum(axis=1)
            diff_sq_distance = sq_distance ** float(1/self.p)

            sorted_distance_index = diff_sq_distance.argsort()               # 记录距离最近的k个点的索引
            class_count = {}
            vola = []
            for i in range(self.k):
                vola = self._y_train[sorted_distance_index[i]]
                class_count[vola] = class_count.get(vola, 0) + 1             # 统计k个点中所属各个类别的实例数目

            sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)    # 返回列表,元素为元组。每个类别以及对应的实例数目
            y_pre.append((sorted_class_count[0][0]))
        return (np.array(y_pre))

    def score(self, X_test, y_test):

        j = 0
        for i in range(len(self.predict_y(X_test))):
            if self.predict_y(X_test)[i] == y_test[i]:
                j += 1
        return ('accuracy: {:.10%}'.format(j / len(y_test)))
import numpy as np
import operator

from sklearn import datasets
from sklearn.model_selection import train_test_split
# 获取数据集,并进行8:2切分
iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 定义分类器的实例,并进行拟合预测
f = KNNClassify()
f.fit(X_train, y_train)
y_pre = f.predict_y(X_test)
accuracy = f.score(X_test, y_test)
print(y_test)
print(y_pre)
print(accuracy)

神经网络

from sklearn import neural_network
import matplotlib.pyplot as plt
import numpy as np
x_data =np.linspace(-10,10,500)
y_data=x_data**2+3*x_data+1
x_test =np.linspace(-10,10,500)
y_test=x_test**2+3*x_test+1
mlp=neural_network.MLPRegressor(hidden_layer_sizes=(40,20 ), activation='relu',
                                solver='adam', alpha=0.0001, batch_size='auto',
                                learning_rate='constant', learning_rate_init=0.001,
                                power_t=0.5, max_iter=10000)
mlp.fit(np.asarray(x_data).reshape([-1,1]),y_data)
print(mlp.loss_)
pre=mlp.predict(x_test.reshape([-1,1]))
plt.plot(np.array(x_test),np.array(y_test),c='b',label='real')
plt.plot(np.array(x_test),np.array(pre),c='r',label='nihe')
plt.legend()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值