from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0) # 实例化
# 交叉验证有5个参数
# 第一个参数:可以是任何实例化后的算法模型;
# 第二个参数:不需要划分测试集和验证集的数据;第三个参数:完整的不需要划分的标签
# 第四个参数:把数据分为10份,默认是5,通常也选择5
# 第五个参数:scoring 返回的结果的类型,对于回归默认为r的平方,可选:neg_mean_squared_error
result = cross_val_score(regressor, boston.data, boston.target, cv=10)
print(result)
输出结果:
分析:
对于DecisionTreeRegressor,回归树接口 score 默认返回的是,有正有负
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0) # 实例化
result = cross_val_score(regressor, boston.data, boston.target, cv=10, scoring='neg_mean_squared_error')
print(result)
结果: