二叉搜索树的js实现

二叉树的数据结构的重点内容,而二叉搜索树又是二叉树的重点,地位仅次于红黑树
下面是js实现的具体方法,插入 先中后遍历,求最值,删除(最难,没有完善,求大佬)。

function BinarySearchTree() {
    function Node(key) {

        this.key = key;
        this.left = null;
        this.right = null;
    }
    //属性
    this.root = null

    //方法
    //插入数据
    BinarySearchTree.prototype.insert = function(key) {
            //1.根据key创建节点
            let newNode = new Node(key);
            //2.判断根节点是否有值
            if (this.root == null) {
                this.root = newNode
            } else {
                this.insertNode(this.root, newNode)
            }
        }
        //查找方法的私有方法,不对外开放
    BinarySearchTree.prototype.insertNode = function(node, newNode) {
            if (newNode.key < node.key) {
                //向左查找
                if (node.left == null) {
                    node.left = newNode;
                } else {
                    this.insertNode(node.left, newNode);
                }
            } else {
                //向右查找
                if (node.right == null) {
                    node.right = newNode
                } else {
                    this.insertNode(node.right, newNode);
                }
            }
        }
        //树的遍历
    BinarySearchTree.prototype.preOrderTraversal = function(handler) {
        this.preOrderTraversalNode(this.root, handler);
    }
    BinarySearchTree.prototype.preOrderTraversalNode = function(node, handler) {
            if (node != null) {
                //处理经过的节点
                handler(node.key);
                //处理经过节点的左子节点
                this.preOrderTraversalNode(node.left, handler);

                //3.处理经过节点的柚子节点
                this.preOrderTraversalNode(node.right, handler)
            }
        }
        //2.中序遍历
    BinarySearchTree.prototype.midOrderTraser = function(handler) {
        this.midOrderTraserNode(this.root, handler)
    }
    BinarySearchTree.prototype.midOrderTraserNode = function(node, handler) {
            if (node != null) {
                //处理左子树中的节点
                this.midOrderTraserNode(node.left, handler)
                    //处理经过的节点
                handler(node.key);

                this.midOrderTraserNode(node.right, handler)

            }
        }
        //后序遍历
    BinarySearchTree.prototype.postOrderTraser = function(handler) {
        this.postOrderTraserNode(this.root, handler)
    }
    BinarySearchTree.prototype.postOrderTraserNode = function(node, hanler) {
            if (node != null) {
                //1.处理左子树中的节点
                this.postOrderTraserNode(node.left, hanler)
                    //1.处理You子树中的节点
                this.postOrderTraserNode(node.right, hanler)

                hanler(node.key)
            }
        }
        //寻找最值(最大值)

    BinarySearchTree.prototype.max = function() {
            let node = this.root;
            let key = null;
            while (node != null) {
                key = node.key
                node = node.right
            }
            return key
        }
        //最小值
    BinarySearchTree.prototype.min = function() {
            let node = this.root;
            let key = null;
            while (node != null) {
                key = node.key
                node = node.left
            }
            return key
        }
        //搜索某一个key
    BinarySearchTree.prototype.search = function(key) {
            //1.获取更节点
            let node = this.root;
            //2.循环
            while (node != null) {
                if (node.key > key) {
                    //往左找
                    node = node.left
                } else if (node.key < key) {
                    node = node.right
                } else {
                    return true
                }
            }
            return false
        }
        //删除节点
        /* 
            1.没有子节点
        */
    BinarySearchTree.prototype.remove = function(key) {
        //1.寻找要删除的节点
        //2.定义变量,保存一些信息
        let current = this.root
        let parent = null;
        let isLeftChild = true
            //1.2寻找删除的节点
        while (current.key != key) {
            parent = current
            if (key < current.key) {
                isLeftChild = true
                current = current.left
            } else {
                isLeftChild = false;
                current = current.right
            }
        }
        //如果没有找到
        if (current == null) {
            return false
        }
        //根据对应的情况删除的节点
        //找到了key

        // 2.1.刷除的节点是叶子节点(没有子节点)


        if (current.left == null && current.right == null) {
            if (current == this.root) {
                this.root = null
            } else if (isLeftChild) {
                parent.left = null
            } else {
                parent.right = null
            }
        }
        // 2.2.删除的节点有一个子节点
        else if (current.right == null) {
            if (current == this.root) {
                this.root = current.left
            }
            if (isLeftChild) {
                parent.left = current.left
            } else {
                parent.right = parent.left
            }
        } else if (current.left == null) {
            if (current == this.root) {
                this.root = current.right
            }
            if (isLeftChild) {
                parent.left = current.right
            } else {
                parent.right = current.right
            }
        }
        // 2.3.删除的节点有两个子节点



    }
};
var bst = new BinarySearchTree()
    // 2.插入数据
bst.insert(11)
bst.insert(7)
bst.insert(15)
bst.insert(5)
bst.insert(3)
bst.insert(9)
bst.insert(8)
bst.insert(10)
bst.insert(13)
bst.insert(12)
bst.insert(14)
bst.insert(20)
bst.insert(18)
bst.insert(25)
bst.insert(6)

//3.测试遍历(先)
var resultString = "";
bst.preOrderTraversal(function(key) {
        resultString += key + " "
    })
    // alert(resultString)
resultString

//中序遍历
var resultStringmid = "";
bst.midOrderTraser(function(key) {
        resultStringmid += key + " "
    })
    // alert(resultString)
resultStringmid

//后序遍历
var resultStringpost = "";
bst.postOrderTraser(function(key) {
        resultStringpost += key + " "
    })
    // alert(resultString)
resultStringpost
//求二叉搜索树的最值
console.log(bst.max())
console.log(bst.min())

//搜索方法
console.log(bst.search(6))
console.log(bst.search(24))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值