Redis分布式锁详解
文章目录
一:如何实现互斥能力?
想要实现分布式锁,必须要求 Redis 有「互斥」的能力
我们可以使用 SETNX 命令,这个命令表示SET if not exists
,即如果key不存在,才会设置它的值,否则什么也不做。
两个客户端进程可以执行这个命令,达到互斥,就可以实现一个分布式锁。
客户端 1 申请加锁,加锁成功:
127.0.0.1:6379> SETNX lock 1
(integer) 1 # 客户端1,加锁成功
客户端 2 申请加锁,因为它后到达,加锁失败:
127.0.0.1:6379> SETNX lock 1
(integer) 0 # 客户端2,加锁失败
此时,加锁成功的客户端,就可以去操作「共享资源」
操作完成后,还要及时释放锁,给后来者让出操作共享资源的机会。如何释放锁呢?
也很简单,直接使用 DEL 命令删除这个 key 即可:
127.0.0.1:6379> DEL lock # 释放锁
(integer) 1
二:死锁问题(设置过期时间)
- 程序处理业务逻辑异常,没及时释放锁
- 进程挂了,没机会释放锁
这时,这个客户端就会一直占用这个锁,而其它客户端就「永远」拿不到这把锁了。
为了针对上述的死锁问题:在申请锁时,给这把锁设置一个「租期」。
在 Redis 中实现时,就是给这个 key 设置一个「过期时间」。
这里我们假设,操作共享资源的时间不会超过 10s,那么在加锁时,给这个 key 设置 10s 过期即可:
127.0.0.1:6379> SETNX lock 1 # 加锁
(integer) 1
127.0.0.1:6379> EXPIRE lock 10 # 10s后自动过期
(integer) 1
这样一来,无论客户端是否异常,这个锁都可以在 10s 后被「自动释放」,其它客户端依旧可以拿到锁。
还是有问题。
现在的操作,加锁、设置过期是 2 条命令,有没有可能只执行了第一条,第二条却「来不及」执行的情况发生呢?例如:
- SETNX 执行成功,执行 EXPIRE 时由于网络问题,执行失败
- SETNX 执行成功,Redis 异常宕机,EXPIRE 没有机会执行
- SETNX 执行成功,客户端异常崩溃,EXPIRE 也没有机会执行
总之,这两条命令不能保证是原子操作(一起成功),就有潜在的风险导致过期时间设置失败,依旧发生「死锁」问题
在 Redis 2.6.12 之后,Redis 扩展了 SET 命令的参数,用这一条命令就可以了:
# 一条命令保证原子性执行
127.0.0.1:6379> SET lock 1 EX 10 NX
OK
然而还有严重的问题:
- 客户端 1 加锁成功,开始操作共享资源
- 客户端 1 操作共享资源的时间,「超过」了锁的过期时间,锁被「自动释放」
- 客户端 2 加锁成功,开始操作共享资源
- 客户端 1 操作共享资源完成,释放锁(但释放的是客户端 2 的锁)
看到了么,这里存在两个严重的问题:
- 锁过期:客户端 1 操作共享资源耗时太久,导致锁被自动释放,之后被客户端 2 持有
- 释放别人的锁:客户端 1 操作共享资源完成后,却又释放了客户端 2 的锁
三:锁被别人释放了怎么办(lua -> uuid)
客户端在加锁时,设置一个只有自己知道的「唯一标识」进去。
例如,可以是自己的线程 ID,也可以是一个 UUID(随机且唯一),这里我们以 UUID 举例
# 锁的VALUE设置为UUID
127.0.0.1:6379> SET lock $uuid EX 20 NX
OK
这里假设 20s 操作共享时间完全足够,先不考虑锁自动过期的问题。
之后,在释放锁时,要先判断这把锁是否还归自己持有,伪代码可以这么写:
# 锁是自己的,才释放
if redis.get("lock") $uuid:
redis.del("lock")
这里释放锁使用的是 GET + DEL
两条命令,这时,又会遇到我们前面讲的原子性问题了。
- 客户端 1 执行 GET,判断锁是自己的
- 客户端 2 执行了 SET 命令,强制获取到锁(虽然发生概率比较低,但我们需要严谨地考虑锁的安全性模型)
- 客户端 1 执行 DEL,却释放了客户端 2 的锁
由此可见,这两个命令还是必须要原子执行才行。
怎样原子执行呢?Lua 脚本。我们可以把这个逻辑,写成 Lua 脚本,让 Redis 来执行。
因为 Redis 处理每一个请求是「单线程」执行的,在执行一个 Lua 脚本时,其它请求必须等待,直到这个 Lua 脚本处理完成
安全释放锁的 Lua 脚本如下:
// 判断锁是自己的,才释放
if redis.call("GET",KEYS[1]) ARGV[1]
then
return redis.call("DEL",KEYS[1])
else
return 0
end
好了,这样一路优化,整个的加锁、解锁的流程就更「严谨」了。
这里我们先小结一下,基于 Redis 实现的分布式锁,一个严谨的的流程如下:
- 加锁:
SET lock_key $unique_id EX $expire_time NX
- 操作共享资源
- 释放锁:Lua 脚本,先 GET 判断锁是否归属自己,再 DEL 释放锁
四:锁的过期时间不好评估怎么办?(Redission)
前面我们提到,锁的过期时间如果评估不好,这个锁就会有「提前」过期的风险。
当时给的妥协方案是,尽量「冗余」过期时间,降低锁提前过期的概率。
加锁时,先设置一个过期时间,然后我们开启一个「守护线程」,定时去检测这个锁的失效时间,如果锁快要过期了,操作共享资源还未完成,那么就自动对锁进行「续期」,重新设置过期时间
如果你是 Java 技术栈,幸运的是,已经有一个库把这些工作都封装好了:Redisson。
Redisson采用了「自动续期」的方案来避免锁过期,这个守护线程我们一般也把它叫做「看门狗」线程。
这个 SDK 提供的 API 非常友好,它可以像操作本地锁的方式,操作分布式锁。如果你是 Java 技术栈,可以直接把它用起来。
五:集群中的分布式锁(RedLock)
之前分析的场景都是,锁在「单个」Redis 实例中可能产生的问题,并没有涉及到 Redis 的部署架构细节。
而我们在使用 Redis 时,一般会采用主从集群 + 哨兵的模式部署
这样做的好处在于,当主库异常宕机时,哨兵可以实现「故障自动切换」,把从库提升为主库,继续提供服务,以此保证可用性。
那当「主从发生切换」时,这个分布锁会依旧安全吗?
试想这样的场景:
- 客户端 1 在主库上执行 SET 命令,加锁成功
- 此时,主库异常宕机,SET 命令还未同步到从库上(主从复制是异步的)
- 从库被哨兵提升为新主库,这个锁在新的主库上,丢失了!
为此,Redis 的作者提出一种解决方案,就是我们经常听到的 Redlock(红锁)。
Redlock 的方案基于 2 个前提:
- 不再需要部署从库和哨兵实例,只部署主库
- 但主库要部署多个,官方推荐至少 5 个实例
也就是说,想用使用 Redlock,你至少要部署 5 个 Redis 实例,而且都是主库,它们之间没有任何关系,都是一个个孤立的实例。
不是部署 Redis Cluster,就是部署 5 个简单的 Redis 实例
Redlock 具体如何使用的流程是这样的,一共分为 5 步:
- 客户端先获取「当前时间戳T1」
- 客户端依次向这 5 个 Redis 实例发起加锁请求(用前面讲到的 SET 命令),且每个请求会设置超时时间(毫秒级,要远小于锁的有效时间),如果某一个实例加锁失败(包括网络超时、锁被其它人持有等各种异常情况),就立即向下一个 Redis 实例申请加锁
- 如果客户端从 >=3 个(超过半数)以上 Redis 实例加锁成功,则再次获取「当前时间戳T2」,如果 T2 - T1 < 锁的过期时间,此时,认为客户端加锁成功,否则认为加锁失败
- 加锁成功,去操作共享资源(例如修改 MySQL 某一行,或发起一个 API 请求)
- 加锁失败,向「全部节点」发起释放锁请求(前面讲到的 Lua 脚本释放锁)
有 4 个重点:
- 客户端在多个 Redis 实例上申请加锁a
- 必须保证大多数节点加锁成功
- 大多数节点加锁的总耗时,要小于锁设置的过期时间
- 释放锁,要向全部节点发起释放锁请求
❓ 疑问:为什么要在多个实例上加锁?
本质上是为了「容错」,部分实例异常宕机,剩余的实例加锁成功,整个锁服务依旧可用。
❓ 疑问:为什么大多数加锁成功,才算成功?
多个 Redis 实例一起来用,其实就组成了一个「分布式系统」。
在分布式系统中,总会出现「异常节点」,所以,需要考虑异常节点达到多少个,也依旧不会影响整个系统的「正确性」。
如果只存在「故障」节点,只要大多数节点正常,那么整个系统依旧是可以提供正确服务的。
这个问题的模型,就是我们经常听到的「拜占庭将军」问题
拜占庭将军问题是一个协议问题,拜占庭帝国军队的将军们必须全体一致的决定是否攻击某一支敌军。问题是这些将军在地理上是分隔开来的,并且将军中存在叛徒。叛徒可以任意行动以达到以下目标:欺骗某些将军采取进攻行动;促成一个不是所有将军都同意的决定,如当将军们不希望进攻时促成进攻行动;或者迷惑某些将军,使他们无法做出决定。如果叛徒达到了这些目的之一,则任何攻击行动的结果都是注定要失败的,只有完全达成一致的努力才能获得胜利 。
拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或断开以及遭到恶意攻击,计算机和网络可能出现不可预料的行为
❓ 疑问:为什么步骤 3 加锁成功后,还要计算加锁的累计耗时?
因为操作的是多个节点,所以耗时肯定会比操作单个实例耗时更久,而且,因为是网络请求,网络情况是复杂的,有可能存在延迟、丢包、超时等情况发生,网络请求越多,异常发生的概率就越大。
所以,即使大多数节点加锁成功,但如果加锁的累计耗时已经「超过」了锁的过期时间,那此时有些实例上的锁可能已经失效了,这个锁就没有意义了。
❓ 疑问:为什么释放锁,要操作所有节点?
在某一个 Redis 节点加锁时,可能因为「网络原因」导致加锁失败。
例如,客户端在一个 Redis 实例上加锁成功,但在读取响应结果时,网络问题导致读取失败,那这把锁其实已经在 Redis 上加锁成功了。
所以,释放锁时,不管之前有没有加锁成功,需要释放「所有节点」的锁,以保证清理节点上「残留」的锁。
六:实现示例(redission)
1:引入依赖
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<!-- redission -->
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.16.7</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-test</artifactId>
<version>2.6.2</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>RELEASE</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>5.3.14</version>
<scope>compile</scope>
</dependency>
</dependencies>
2:配置文件设置
第一种方式:创建redission.yml文件
application.yml
spring:
redis:
redisson:
file: classpath:redisson.yaml
创建redisson.yaml
singleServerConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
password: null
subscriptionsPerConnection: 5
clientName: null
address: "redis://127.0.0.1:6379"
subscriptionConnectionMinimumIdleSize: 1
subscriptionConnectionPoolSize: 50
connectionMinimumIdleSize: 24
connectionPoolSize: 64
database: 0
dnsMonitoringInterval: 5000
threads: 16
nettyThreads: 32
codec: !<org.redisson.codec.MarshallingCodec> {}
transportMode: "NIO"
第二种:直接配置
spring:
redis:
redisson:
config:
clusterServersConfig:
idleConnectionTimeout: 10000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
failedSlaveReconnectionInterval: 3000
failedSlaveCheckInterval: 60000
password: null
subscriptionsPerConnection: 5
clientName: null
loadBalancer: !<org.redisson.connection.balancer.RoundRobinLoadBalancer> {}
subscriptionConnectionMinimumIdleSize: 1
subscriptionConnectionPoolSize: 50
slaveConnectionMinimumIdleSize: 24
slaveConnectionPoolSize: 64
masterConnectionMinimumIdleSize: 24
masterConnectionPoolSize: 64
readMode: "SLAVE"
subscriptionMode: "SLAVE"
nodeAddresses:
- "redis://127.0.0.1:7004"
- "redis://127.0.0.1:7001"
- "redis://127.0.0.1:7000"
scanInterval: 1000
pingConnectionInterval: 0
keepAlive: false
tcpNoDelay: false
threads: 16
nettyThreads: 32
codec: !<org.redisson.codec.MarshallingCodec> {}
transportMode: "NIO"
可供使用的Spring Bean:
- RedissonClient
- RedissonRxClient
- RedissonReactiveClient
- RedisTemplate
- ReactiveRedisTemplate
3:代码测试实例
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class RedissonSpringBootStarterApplicationTests {
@Resource
private RedissonClient redissonClient;
@Test
public void start() {
RLock lock = redissonClient.getLock("test");
try {
// 等待时间
long waitTime = 3;
// 锁有效时间
long leaseTime = 10;
// 获取锁
boolean tryLock = lock.tryLock(waitTime, leaseTime, TimeUnit.SECONDS);
log.info("tryLock:{}", tryLock);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
if(lock.isLocked()) {
if(lock.isHeldByCurrentThread()){
lock.unlock();
}
}
}
}
}
4:多节点实现红锁
// 红锁
Config config1 = new Config();
config1.useSingleServer().setAddress("redis://172.0.0.1:5378").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient1 = Redisson.create(config1);
Config config2 = new Config();
config2.useSingleServer().setAddress("redis://172.0.0.1:5379").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient2 = Redisson.create(config2);
Config config3 = new Config();
config3.useSingleServer().setAddress("redis://172.0.0.1:5380").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient3 = Redisson.create(config3);
/**
* 获取多个 RLock 对象
*/
RLock lock1 = redissonClient1.getLock(lockKey);
RLock lock2 = redissonClient2.getLock(lockKey);
RLock lock3 = redissonClient3.getLock(lockKey);
/**
* 根据多个 RLock 对象构建 RedissonRedLock (最核心的差别就在这里)
*/
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
try {
//有看门狗,业务没执行完可以不停的延长锁的过期时间
boolean res = redLock.lock();
if (res) {
//成功获得锁,在这里处理业务
}
} catch (Exception e) {
throw new RuntimeException("aquire lock fail");
}finally{
//无论如何, 最后都要解锁
redLock.unlock();
}