题目链接
https://leetcode-cn.com/problems/edit-distance/
描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
初始代码模板
class Solution {
public int minDistance(String word1, String word2) {
}
}
代码
代码直接看困难的话,推荐看labuladong对这个题的讲解,写的很好
https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++) {
dp[i][0] = i;
}
for (int i = 0; i <= n; i++) {
dp[0][i] = i;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (word1.charAt(i) == word2.charAt(j)) {
dp[i + 1][j + 1] = dp[i][j];
} else {
dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j], dp[i][j + 1]), dp[i + 1][j]) + 1;
}
}
}
return dp[m][n];
}
}