旋转多边形很麻烦,所以我们旋转点
一个点会旋转成一个圆,则我们要求出所有圆在多边形内部的弧所占圆的周长的比例
为了方便,我们可以求出每段弧的中点,判断是否在多边形内部即可
Code:
#include<bits/stdc++.h>
#define db double
#define ll long long
#define eps 1e-6
using namespace std;
inline int read(){
int res=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
return res*f;
}
const int N=1005;
const db pi=acos(-1.0);
inline int sg(db x){return ((x>eps)-(x<-eps));}
struct point{
db x,y;
point(){}
point(db _x,db _y):x(_x),y(_y){}
friend inline point operator - (const point &a,const point &b){return point(a.x-b.x,a.y-b.y);}
friend inline point operator + (const point &a,const point &b){return point(a.x+b.x,a.y+b.y);}
inline point rev(){return point(-x,-y);}
friend inline db operator * (const point &a,const point &b) {return a.x*b.y-a.y*b.x;}
friend inline point operator * (const point &a,const db &b) {return point(a.x*b,a.y*b);}
inline db operator | (point a){return x*a.x+y*a.y;}
inline db dis() {return sqrt(x*x+y*y);}
inline db thi(point a){return acos(((*this)|a)/(dis()*a.dis()));}
}s[N],p[N];
inline db calc(point a,point b,db r){
db res=0;
db f=sg(a*b);
if(sg(max(a.dis(),b.dis())-r)==-1) return 0;
db t=a.thi(b);
db h=fabs((a*b)/(a-b).dis());
if(sg(h-r)>-1) return t*f;
db a0=asin(h/r),a1=a.rev().thi(b-a),a2=b.rev().thi(a-b);
if(sg(a0-a1)==1) res+=a0-a1;
if(sg(a0-a2)==1) res+=a0-a2;
return min(res,t)*f;
}
inline int check(point x,point y){
if(!sg(x.y)) return sg(x.x)==1;
if(!sg(y.y)) return 0;
if(x.y>y.y) swap(x,y);
if(sg(x.y*y.y)==1) return 0;
point xx=x+(y-x)*(x.y/(y.y-x.y));
return sg(xx.x)==1;
}
int main(){
int n,m;
db ans=0.0;
n=read(),m=read();
for(int i=1;i<=n;i++) p[i].x=read(),p[i].y=read();
for(int i=1;i<=m;i++) s[i].x=read(),s[i].y=read();
s[m+1]=s[1];
for(int i=1;i<=m;i++){
if(!sg(s[i]*s[i+1])) continue;
for(int j=1;j<=n;j++){
if(!sg(p[j].dis())) continue;
ans+=calc(s[i],s[i+1],p[j].dis());
}
}
for(int i=1;i<=n;i++){
if(sg(p[i].dis())) continue;
int f=1,cnt=0;
for(int j=1;j<=m;j++){
if(sg(s[j]*s[j+1])) cnt+=check(s[j],s[j+1]);
else if(sg(s[j]|s[j+1])<1) {f=0;break;}
}
if(f && cnt%2==1) ans+=pi*2.0;
}
ans/=(pi*2.0);
printf("%.5lf\n",ans);
return 0;
}