A. Bachgold Problem
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and k.
Input
The only line of the input contains a single integer n (2 ≤ n ≤ 100 000).
Output
The first line of the output contains a single integer k — maximum possible number of primes in representation.
The second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.
Examples
input
Copy
5output
Copy
2 2 3input
Copy
6output
Copy
3 2 2 2
可以找一规律
例如:
2
2
3
3
4
2 2
5
2 3
6
2 2 2
7
2 2 3
#include<stdio.h>
int main()
{
int n ;
int i ;
while(~scanf("%d",&n))
{
printf("%d\n",n/2);
if(n%2==0)
{
for(i=0;i<(n/2);i++)
{
if(i==0)
printf("2");
else printf(" 2");
}
}
else
{
if(n==3)
printf("3");
else
{
for(i=0;i<(n/2);i++)
{
if(i==(n/2)-1)
printf("3");
else printf("2 ");
}
}
}
printf("\n");
}
return 0;
}