题目描述
写出一个高效的算法来搜索 m × n矩阵中的值。
这个矩阵具有以下特性:
- 每行中的整数从左到右是排序的。
- 每行的第一个数大于上一行的最后一个整数。
样例1
输入: [[5]],2
输出: false
样例解释: 没有包含,返回false。
样例2
输入:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
],3
输出: true
样例解释: 包含则返回true。
解题思路
可以看作是一个有序数组被分成了n段,每段就是一行。因此依然可以二分求解。
对每个数字,根据其下标i,j进行编号,每个数字可被编号为0~n*n-1
相当于是在一个数组中的下标。然后直接像在数组中二分一样来做。取的mid要还原成二位数组中的下标,i = mid/n, j = mid%n
java题解
// Binary Search Twice
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0) {
return false;
}
if (matrix[0] == null || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int column = matrix[0].length;
// find the row index, the last number <= target
int start = 0, end = row - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (matrix[mid][0] == target) {
return true;
} else if (matrix[mid][0] < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[end][0] <= target) {
row = end;
} else if (matrix[start][0] <= target) {
row = start;
} else {
return false;
}
// find the column index, the number equal to target
start = 0;
end = column - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (matrix[row][mid] == target) {
return true;
} else if (matrix[row][mid] < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[row][start] == target) {
return true;
} else if (matrix[row][end] == target) {
return true;
}
return false;
}
}
// Binary Search Once
public class Solution {
/**
* @param matrix, a list of lists of integers
* @param target, an integer
* @return a boolean, indicate whether matrix contains target
*/
public boolean searchMatrix(int[][] matrix, int target) {
// write your code here
if(matrix == null || matrix.length == 0){
return false;
}
if(matrix[0] == null || matrix[0].length == 0){
return false;
}
int row = matrix.length;
int column = matrix[0].length;
int start = 0, end = row * column - 1;
while(start <= end){
int mid = start + (end - start) / 2;
int number = matrix[mid / column][mid % column];
if(number == target){
return true;
}else if(number > target){
end = mid - 1;
}else{
start = mid + 1;
}
}
return false;
}
}
C++题解
class Solution {
public:
/**
* @param matrix, a list of lists of integers
* @param target, an integer
* @return a boolean, indicate whether matrix contains target
*/
bool searchMatrix(vector<vector<int> > &matrix, int target) {
int n = matrix.size();
if (n == 0) {
return false;
}
int m = matrix[0].size();
if (m == 0) {
return false;
}
int start = 0, end = n * m - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
int row = mid / m;
int col = mid % m;
if (matrix[row][col] < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[start / m][start % m] == target) {
return true;
}
if (matrix[end / m][end % m] == target) {
return true;
}
return false;
}
};
python题解
class Solution:
"""
@param matrix, a list of lists of integers
@param target, an integer
@return a boolean, indicate whether matrix contains target
"""
def searchMatrix(self, matrix, target):
if len(matrix) == 0:
return False
n, m = len(matrix), len(matrix[0])
start, end = 0, n * m - 1
while start + 1 < end:
mid = (start + end) / 2
x, y = mid / m, mid % m
if matrix[x][y] < target:
start = mid
else:
end = mid
x, y = start / m, start % m
if matrix[x][y] == target:
return True
x, y = end / m, end % m
if matrix[x][y] == target:
return True
return False