搜索与图论模板-图论算法

image-20220623212637963

dfs ----- AcWing 842. 排列数字

#include<iostream>

using namespace std;

const int N = 10;
int n;
int path[N];
bool status[N];//默认0,表示没有访问过    1表示访问过
void dfs(int u)
{   
    if(u == n)//u表示遍历的层数
    { 
        for(int i = 0;i < n; i++) cout << path[i] <<" ";
        puts("");
        
        return;//要结束
    }
    //u<n
    for(int i=1 ;i<=n;i++)
    {
        if(!status[i])
        {
            path[u] = i;
            status[i] = true;
            dfs(u+1);
            // path[u] = 0; //因为后面会覆盖掉
            status[i] = false;
        }
    }   
}

int main()
{
    cin>>n;
    dfs(0);
    
    return 0;
}

dfs ----- AcWing 842. 排列数字

#include <iostream>

using namespace std;

const int N = 10;

int n;
int path[N];

void dfs(int u, int state)
{
    if (u == n)
    {
        for (int i = 0; i < n; i ++ ) printf("%d ", path[i]);
        puts("");

        return;
    }

    for (int i = 0; i < n; i ++ )
        if (!(state >> i & 1))
        {
            path[u] = i + 1;
            dfs(u + 1, state + (1 << i));
        }
}

int main()
{
    scanf("%d", &n);

    dfs(0, 0);

    return 0;
}

dfs -----AcWing 843. n-皇后问题

(1) 第一种搜索顺序

#include <iostream>

using namespace std;

const int N = 10;

int n;
bool row[N], col[N], dg[N * 2], udg[N * 2];
char g[N][N];

void dfs(int x, int y, int s)
{
    if (s > n) return;
    if (y == n) y = 0, x ++ ;

    if (x == n)
    {
        if (s == n)
        {
            for (int i = 0; i < n; i ++ ) puts(g[i]);
            puts("");
        }
        return;
    }

    g[x][y] = '.';
    dfs(x, y + 1, s);

    if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])
    {
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
        g[x][y] = 'Q';
        dfs(x, y + 1, s + 1);
        g[x][y] = '.';
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
    }
}

int main()
{
    cin >> n;

    dfs(0, 0, 0);

    return 0;
}

第二种搜索顺序

#include <iostream>

using namespace std;

const int N = 20;

int n;
char g[N][N];
bool col[N], dg[N], udg[N];

void dfs(int u)
{
    if (u == n)
    {
        for (int i = 0; i < n; i ++ ) puts(g[i]);
        puts("");
        return;
    }

    for (int i = 0; i < n; i ++ )
        if (!col[i] && !dg[u + i] && !udg[n - u + i])
        {
            g[u][i] = 'Q';
            col[i] = dg[u + i] = udg[n - u + i] = true;
            dfs(u + 1);
            col[i] = dg[u + i] = udg[n - u + i] = false;
            g[u][i] = '.';
        }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            g[i][j] = '.';

    dfs(0);

    return 0;
}

bfs ---- AcWing 844. 走迷宫

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> //直接用,也可以手写队列

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

int n, m;
int g[N][N], d[N][N]; //g 存储地图  d存储距离

int bfs()
{
    queue<PII> q;

    memset(d, -1, sizeof d);
    d[0][0] = 0;
    q.push({0, 0});

    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}; //处理四个方向

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        for (int i = 0; i < 4; i ++ )
        {
            int x = t.first + dx[i], y = t.second + dy[i];

            if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
            {
                d[x][y] = d[t.first][t.second] + 1;
                q.push({x, y});
            }
        }
    }

    return d[n - 1][m - 1];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];

    cout << bfs() << endl;

    return 0;
}

树与图的存储

树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。

(1)

邻接矩阵:g [a][b]存储边a->b

(2) 邻接表:

// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 初始化
idx = 0;
memset(h, -1, sizeof h);

树与图的遍历

时间复杂度 O(n+m), n表示点数,m 表示边数

(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

模板题 AcWing 846. 树的重心

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N * 2;

int n;
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N];

void add(int a,int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int dfs(int u)
{
    st[u] = true;

    int res = 0, sum = 1;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            int s = dfs(j);
            res = max(res, s);
            sum += s;
        }
        
    }

    res = max(res, n - sum);
    ans = min(ans, res);

    return sum;
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    dfs(1);

    printf("%d\n", ans);

    return 0;
}

模板题 AcWing 847. 图中点的层次(调用stl–queue)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int d[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int bfs()
{
    memset(d, -1, sizeof d);

    queue<int> q;
    d[1] = 0;
    q.push(1);

    while (q.size())
    {
        int t = q.front();
        q.pop();

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] == -1)
            {
                d[j] = d[t] + 1;
                q.push(j);
            }
        }
    }

    return d[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    cout << bfs() << endl;

    return 0;
}

模板题 AcWing 847. 图中点的层次(手写队列)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>


using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int d[N],q[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int bfs()
{
    memset(d, -1, sizeof d);

    int hh=0,tt=0;
    q[0] = 1;
    d[1] = 0;//表示n号点(1)到1号点的距离
    

    while (hh<=tt)
    {
        int t =q[hh++];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] == -1)
            {
                d[j] = d[t] + 1;
                q[++tt]=j;
            }
        }
    }

    return d[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    cout << bfs() << endl;

    return 0;
}

拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列

时间复杂度 O(n+m), n 表示点数,m 表示边数

bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

模板题 AcWing 848. 有向图的拓扑序列

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int d[N],q[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool topsort()
{
    int hh = 0, tt = -1;

    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    return tt == n-1 ;
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);

        d[b] ++ ;
    }

    if (!topsort()) puts("-1");
    else
    {
        for (int i = 0; i < n; i ++ ) printf("%d ", q[i]);
        puts("");
    }

    return 0;
}

image-20220615210559048

朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I

时间复杂是 O(n2+m), n 表示点数,m 表示边数

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

模板题 AcWing 849. Dijkstra求最短路 I

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N];
int dist[N];
bool st[N];

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n ; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(g, 0x3f, sizeof g);
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);

        g[a][b] = min(g[a][b], c);
    }

    printf("%d\n", dijkstra());

    return 0;
}

堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II

时间复杂度 O(mlogn)O(mlogn), nn 表示点数,mm 表示边数

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路

时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

模板题 AcWing 853. 有边数限制的最短路

//flag是为了判断答案也是-1,是后面数据加强了的

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;
bool flag;
struct Edge
{
    int a, b, w;
}edges[M];

int n, m, k;
int dist[N];
int last[N];

int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);

    dist[1] = 0;
    for (int i = 0; i < k; i ++ )
    {
        memcpy(last, dist, sizeof dist);
        for (int j = 0; j < m; j ++ )
        {
            int a =edges[j].a,b=edges[j].b,w=edges[j].w;
            dist[b] = min(dist[b], last[a] + w);
        }
    }
    if(dist[n] > 0x3f3f3f3f / 2) {flag=true;return -1;}
    return dist[n];
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }

    int t=bellman_ford();

    if (t == -1 && flag) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路

时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环

时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)O(n3), nn 表示点数

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jrm1uLMx-1657263328996)(…/AppData/Roaming/Typora/typora-user-images/image-20220616212542640.png)]

朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树
时间复杂度是 O(mlogm)O(mlogm), nn 表示点数,mm 表示边数

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m)O(n+m), nn 表示点数,mm 表示边数

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

工具人来了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值