Linux虚拟化、流量治理

大规模 Kubernetes 集群故障注入的利器-ChaosBlade

Linux 虚拟化
对于 Linux 虚拟化技术而言,核心实现原理就是 Linux Namespace隔离能力Linux Cgroups限制能力,以及基于 rootfs文件系统;

Linux Namespace 可以让进程(容器)处在一个独立的沙箱环境Linux Cgroups 可以限制该沙箱内进程的资源使用,比如限制 CPU、内存的使用率等等;

Linux Cgroups
Linux Cgroups 可以限制沙箱内进程的资源使用,并且也可以人为将某个进程的资源使用交给已经存在的某个的 Linux Cgroups 控制,而通常容器的资源使用率统计也是 Linux Cgroups 控制组下面进程的使用情况计算出来的;此时在宿主机启动的一个 CPU 负载的进程,并且将改进程交给某个已经存在的容器的控制组控制,就相当于给该容器注入了 CPU 负载场景。
在 docker 上面尝试在不侵入该容器的情况下,给容器 nginx 注入 CPU 负载的场景。

Linux Namespace
通过 Linux Cgroups 做到了不侵入该容器的情况下,给该容器注入 CPU 负载的场景,同时也能支持CPU 高负载、内存占用高、IO 高负载等等; 对于其他类型的故障,比如网络延时、文件删除等等,则需要通过另外一种方式来实现 , 就是 Linux Namespace 的隔离能力
Linux Namespace 网络、IPC、MNT 等命名空间隔离的能力,在容器独立的 Namespace 下,新建一个文件,新启动一个进程等等操作也是其他容器不可感知和观测到的;

Linux的namespace

Linux内核namespace机制
Linux Namespaces机制提供一种资源隔离方案。PID,IPC,Network等系统资源不再是全局性的,而是属于某个特定的Namespace。每个namespace下的资源对于其他namespace下的资源都是透明,不可见的。因此在操作系统层面上看,就会出现多个相同pid的进程。系统中可以同时存在两个进程号为0,1,2的进程,由于属于不同的namespace,所以它们之间并不冲突。而在用户层面上只能看到属于用户自己namespace下的资源,例如使用ps命令只能列出自己namespace下的进程。这样每个namespace看上去就像一个单独的Linux系统。
在这里插入图片描述

“天猫双11”背后的流量治理技术与标准实践

我们从微服务流量的视角来看,可以粗略分为两类常见的运行时场景:

服务自身流量超过承载能力导致不可用。比如激增流量、批量任务投递导致服务负载飙高,无法正常处理请求。

服务因依赖其他不可用服务,导致自身连环不可用。比如我们的服务可能依赖好几个第三方服务,假设某个支付服务出现异常,调用非常慢,而调用端又没有有效地进行预防与处理,则调用端的线程池会被占满,影响服务自身正常运转。在分布式系统中,调用关系是网状的、错综复杂的,某个服务出现故障可能会导致级联反应,导致整个链路不可用。
在这里插入图片描述
OpenSergo 流量防护与容错标准
在 OpenSergo 中,我们结合 Sentinel 等框架的场景实践对流量防护与容错抽出标准 CRD。一个容错治理规则 (FaultToleranceRule) 由以下三部分组成:
• Target: 针对什么样的请求。可以通过通用的 resourceKey(Sentinel 中即为资源名的概念)来标识,也可以用细化的规则来标识(如具有某个特定 HTTP header 的请求)
• Strategy: 容错或控制策略,如流控、熔断、并发控制、自适应过载保护、离群实例摘除等
• FallbackAction: 触发后的 fallback 行为,如返回某个错误或状态码
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值