SSD Tensorflow API 训练完整笔记

这篇博客详细记录了使用Tensorflow的SSD模型进行目标检测的全过程,包括使用labelimg标注数据集,数据转换为tfrecord,训练ckpt模型,转换pb模型,测试及转换为tflite模型,最后在安卓平台的部署步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要针对几个方面:

                                 一、标注数据集(自己用的labelimg,注意事项,有些朋友用的其他的标注软件,但是需要注意标注出来的XML格式和labelimg的XMl可能有区别

                                 二、数据转换tfrecord

                                 三、训练ckpt模型

                                 四、转换pb模型

                                 五、测试pb模型

                                 六、转换tflite模型

                                 七、部署安卓

一、标注数据集

        1、下载安装labelimg,下载地址如下(安装使用方法自行百度):

         https://github.com/tzutalin/labelImg        

        2、贴出两种工具标注出不同的XML,大家注意(问题:1、区别自己分析后面转换为TXT、CSV等过段格式容易出问题,别混   着。2、标注时,标注框坐标注意别标出为负数。3、修改name、path等内容时注意别多加):

       

#第一种labelimg标注
<?xml version="1.0" ?><annotation>
	<folder>phone</folder>
	<filename>5.jpg</filename>
	<path>/home/hanqing/SSD-Tensorflow-master/VOC2019/JPEGImages/phone/5.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>416</width>
		<height>416</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>phone</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>117</xmin>
			<ymin>72</ymin>
			<xmax>352</xmax>
			<ymax>316</ymax>
		</bndbox>
	</object>
#第二种标注精灵标注
<?xml version="1.0" ?><doc>
	<path>/home/hanqing/SSD-Tensorflow-master/VOC2019/JPEGImages/phone/sj1286.jpg</path>
	<outputs>
		<object>
			<item>
				<name>camera</name>
				<bndbox>
					<xmin>125</xmin>
					<ymin>97</ymin>
					<xmax>132</xmax>
					<ymax>103</ymax>
				</bndbox>
			</item>
			<item>
				<name>camera</name>
				<bndbox>
					<xmin>123</xmin>
					<ymin>118</ymin>
					<xmax>129</xmax>
					<ymax>125</ymax>
				</bndbox>
			</item>
			<item>
				<name>phone</name>
				<bndbox>
					<xmin>23</xmin>
					<ymin>69</ymin>
					<xmax>197</xmax>
					<ymax>359</ymax>
				</bndbox>
			</item>
		</object>
	</outputs>
	<time_labeled>1577951027395</time_labeled>
	<labeled>true</labeled>
	<size>
		<width>416</width>
		<height>416</height>
		<depth>3</depth>
	</size>
</doc>

二、数据转换tfrecord

1、在目录VOC2019/下新建py文件:train_test_split.py内容如下

#新建py文件:train_test_split.py
#内容如下:
#-*-coding:utf-8-*-
import os
import random
import time
import shutil

xmlfilepath = './xml'
saveBasePath = "./Annotations" #存区分xml文件位置

trainval_percent = 0.9     #测试/训练比例
train_percent = 0.85
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
print("train and val size", tv)
print("train size", tr)
# print(total_xml[1])
start = time.time()
# print(trainval)
# print(train)
test_num = 0
val_num = 0
train_num = 0
# for directory in ['train','test',"val"]:
#         xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
#         if(not os.path.exists(xml_path)):
#             os.mkdir(xml_path)
#         # shutil.copyfile(filePath, newfile)
#         print(xml_path)
for i in list:
    name = total_xml[i]
    # print(i)
    if i in trainval:  # train and val set
        # ftrainval.write(name)
        if i in train:
            # ftrain.write(name)
            # print("train")
            # print(name)
            # print("train: "+name+" "+str(train_num))
            directory = "train"
            train_num += 1
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
            if (not os.path.exists(xml_path)):
                os.mkdir(xml_path)
            filePath = os.path.join(xmlfilepath, name)
            newfile = os.path.join(saveBasePath, os.path.join(directory, name))
            shutil.copyfile(filePath, newfile)

        else:
            # fval.write(name)
            # print("val")
            # print("val: "+name+" "+str(val_num))
            directory = "validation"
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
            if (not os.path.exists(xml_path)):
                os.mkdir(xml_path)
            val_num += 1
            filePath = os.path.join(xmlfilepath, name)
            newfile = os.path.join(saveBasePath, os.path.join(directory, name))
            shutil.copyfile(filePath, newfile)
            # print(name)
    else:  # test set
        # ftest.write(name)
        # print("test")
        # print("test: "+name+" "+str(test_num))
        directory = "test"
        xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
        if (not os.path.exists(xml_path)):
            os.mkdir(xml_path)
        test_num += 1
        filePath = os.path.join(xmlfilepath, name)
        newfile = os.path.join(saveBasePath, os.path.join(directory, name))
        shutil.copyfile(filePath, newfile)
        # print(name)

# End time
end = time.time()
seconds = end - start
print("train total : " + str(train_num))
print("validation total : " + str(val_num))
print("test total : " + str(test_num))
total_num = train_num + val_num + test_num
print("total number : " 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

读书小孩

您的打赏将是我前行的动力源

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值