传送门
题意:给出一张N个点M条边的有向无环图,1号点为全图唯一的入度为0的点,N号点为全图唯一的出度为0的点
现在你从1号点出发,每单位时间,你有相同的概率 走向相邻节点或原地不动。第 i 单位时间内你的消耗为 i
询问你走到 N 点的期望消耗
先求出1到n的期望时间,再由此推出期望消耗,第二个转移公式有点迷,本来应该加上从1到n的时间期望,但却加上了从i到n的时间期望。有个博客说累加起来就是一样的,这么说只有dp2[1]算的是正确的?。。。还是不明白
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<cstdio>
#include<queue>
using namespace std;
const int MAXN = 1e5+5;
int n, m, cnt;
double f1[MAXN], f2[MAXN];
int in_degree[MAXN], out_degree[MAXN];
struct Edge{
int to, next;
}edge[MAXN*2];
int head[MAXN], tot;
void addEdge(int u, int v){
edge[++tot].to = v;
edge[tot].next = head[u];
head[u] = tot;
}
int topo[MAXN];
void topoSort(){
queue<int> q;
for(int i = 1; i <= n; ++i)
if(in_degree[i] == 0) q.push(i);
while(!q.empty()){
int node = q.front();
q.pop();
topo[++cnt] = node;
for(int i = head[node]; i != -1; i = edge[i].next){
int v = edge[i].to;
in_degree[v]--;
if(in_degree[v] == 0) q.push(v);
}
}
}
double solve(){
topoSort();
for(int i = cnt; i >= 1; --i)
{
int u = topo[i];
double tmp = 0.0;
for(int j = head[u]; j != -1; j = edge[j].next){
int v = edge[j].to;
tmp += f1[v];
}
if(out_degree[u] == 0) continue;
tmp += out_degree[u] + 1.0;
f1[u] = tmp / out_degree[u];
//cout << f1[u] << endl;
}
for(int i = cnt; i >= 1; --i)
{
int u = topo[i];
double tmp = 0.0;
for(int j = head[u]; j != -1; j = edge[j].next){
int v = edge[j].to;
tmp += f2[v];
}
if(out_degree[u] == 0) continue;
tmp += (out_degree[u]+1.0) * f1[u];
f2[u] = tmp / out_degree[u];
}
return f2[1];
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
cnt = 0;
tot = 0;
memset(head, -1, sizeof(head));
memset(in_degree, 0, sizeof(in_degree));
memset(out_degree, 0, sizeof(out_degree));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
f1[i] = f2[i] = 0.0;
int u, v;
for(int i = 1; i <= m; ++i)
{
scanf("%d%d", &u, &v);
addEdge(u, v);
out_degree[u]++;
in_degree[v]++;
}
printf("%.2f\n", solve());
}
return 0;
}