昇思第2天

03 张量

张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在  n n n 维空间内,有  n r n^{r} nr 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。 r r r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。

张量是一种特殊的数据结构,与数组和矩阵非常相似。张量(Tensor)是MindSpore网络运算中的基本数据结构

init主要用于并行模式下的延后初始化,在正常情况下不建议使用init对参数进行初始化。

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

  • 形状(shape):Tensor的shape,是一个tuple。

  • 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。

  • 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。

  • 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。

  • 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。

  • 元素个数(size): Tensor中所有元素的个数,是一个整数。

  • 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。

根据介绍维度似乎不一定等于行数
concat将给定维度上的一系列张量连接起来。(竖着)
stack则是从另一个维度上将两个张量合并起来。(三维拼接)
在这里插入图片描述
张量会自动随原np变化
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值