今天仍旧要写作业
T1 数塔狂想曲
【问题描述】
FJ有M个牛棚,编号1至M,刚开始所有牛棚都是空的。
FJ有N头牛,编号1至N,这N头牛按照编号从小到大依次排队走进牛棚,每一天只有一头奶牛走进牛棚。第i头奶牛选择走进第p[i]个牛棚。
由于奶牛是群体动物,所以每当一头奶牛x进入牛棚y之后,牛棚y里的所有奶牛们都会喊一声“欢迎欢迎,热烈欢迎”,由于声音很大,所以产生噪音,产生噪音的大小等于该牛棚里所有奶牛(包括刚进去的奶牛x在内)的数量。
FJ很讨厌噪音,所以FJ决定最多可以使用K次“清空”操作,每次“清空”操作就是选择一个牛棚,把该牛棚里所有奶牛都清理出去,那些奶牛永远消失。“清空”操作只能在噪音产生后执行。
现在的问题是:FJ应该选择如何执行“清空”操作,才能使得所有奶牛进入牛棚后所产生的噪音总和最小?
【Coding】
这个可不是很难搞,但是我的源代码丢了,所以只能用后来改过的了,如下
思路上就是将一个图跑个两遍,记录每一层的最大值与次大值。如果最大值被ban就输出次大值
#include<bits/stdc++.h>
using namespace std;
const int maxxn = 1010;
int a[maxxn];
int b[maxxn];
int smaxx[maxxn];
int maxx[maxxn];
int maxx_id[maxxn];
int n;
int m;
int v[maxxn][maxxn];
int f[maxxn][maxxn];
int ff[maxxn][maxxn];
inline int Read () {
int xx = 0;
int ff = 1;
char ch = getchar();
while (ch > '9'||ch < '0') {
if (ch == '-') ff = -1;
ch = getchar();
}
while (ch >= '0'&&ch <= '9') {
xx = (xx << 1) + (xx << 3) + (ch ^ 48);
ch = getchar();
}
return xx * ff;
}
int main () {
freopen("tower.in","r",stdin);
freopen("tower.out","w",stdout);
n = Read(); m = Read();
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= i;j++) {
v[i][j] = Read();
}
}
for (int i = 1;i <= n;i++) {
maxx[i] = -1;
smaxx[i] = -1;
maxx_id[i] = -1;
}
f[1][1] = v[1][1];
for (int i = 2;i <= n;i++) {
for (int j = 1;j <= i;j++) {
f[i][j] = max(v[i][j] + max(f[i - 1][j], f[i - 1][j - 1]),f[i][j]);
}
}
for (int i = 1;i <= n;i++) {
ff[n][i] = v[n][i];
}
for (int i = n - 1;i >= 1;i--) {
for (int j = i;j >= 1;j--) {
ff[i][j] = max(ff[i][j],v[i][j] + max(ff[i + 1][j],ff[i + 1][j + 1]));
}
}
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= i;j++) {
if (maxx[i] < f[i][j] + ff[i][j] - v[i][j]) {
maxx[i] = f[i][j] + ff[i][j] - v[i][j];
maxx_id[i] = j;
}
}
for (int j = 1;j <= i;j++) {
if ((smaxx[i] < f[i][j] + ff[i][j] - v[i][j]) && (j != maxx_id[i])) {
smaxx[i] = f[i][j] + ff[i][j] - v[i][j];
}
}
}
for (int i = 1;i <= m;i++) {
int aa = Read(); int bb = Read();
if (maxx_id[aa] == bb) printf("%d\n",smaxx[aa]);
else printf("%d\n",maxx[aa]);
}
return 0;
}
T2 噪音
【题目描述】
FJ有M个牛棚,编号1至M,刚开始所有牛棚都是空的。
FJ有N头牛,编号1至N,这N头牛按照编号从小到大依次排队走进牛棚,每一天只有一头奶牛走进牛棚。第i头奶牛选择走进第p[i]个牛棚。
由于奶牛是群体动物,所以每当一头奶牛x进入牛棚y之后,牛棚y里的所有奶牛们都会喊一声“欢迎欢迎,热烈欢迎”,由于声音很大,所以产生噪音,产生噪音的大小等于该牛棚里所有奶牛(包括刚进去的奶牛x在内)的数量。
FJ很讨厌噪音,所以FJ决定最多可以使用K次“清空”操作,每次“清空”操作就是选择一个牛棚,把该牛棚里所有奶牛都清理出去,那些奶牛永远消失。“清空”操作只能在噪音产生后执行。
现在的问题是:FJ应该选择如何执行“清空”操作,才能使得所有奶牛进入牛棚后所产生的噪音总和最小?
【Coding】
如下
#include<bits/stdc++.h>
using namespace std;//这个代码,用来水四十分
typedef long long LL;
const int maxxn = 1000;
LL sum[maxxn];
LL n,m,k;
LL f[maxxn][maxxn];
LL g[maxxn][maxxn]; //这个是用来表示这个牛棚不清除所拥有的噪音
inline LL gget(LL x) {
return (x * (x + 1)) /2;
}
inline LL Read() {
LL xx = 0;
LL ff = 1;
char ch = getchar();
while (ch > '9' || ch < '0') {
if (ch == '-') ff = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
xx = (xx << 1) + (xx << 3) + (ch ^ 48);
ch = getchar();
}
return xx * ff;
}
int main () {
freopen("noise.in","r",stdin);
freopen("noise.out","w",stdout);
n = Read(); m = Read(); k = Read();
for (int i = 1;i <= n;i++) {
LL a = Read();
sum[a]++;
}
for (int i = 1;i <= m;i++) {
g[i][0] = gget(sum[i]);//这里是每个牛棚的噪音
for (int j = 1;j <= k;j++) {
int aa = sum[i]%(j + 1); int bb = j + 1 - aa;
g[i][j] = aa * gget(sum[i]/(j + 1) + 1) + bb * gget(sum[i]/(j + 1));
// cout << "______________________" <<endl;
// cout << i << ' ' <<j <<endl;
// cout << g[i][j] <<endl;
}
}
for (int i = 1;i <= m;i++) {
for (int j = 0;j <= k;j++) {
if (i == 1) f[i][j] = g[i][j];
else f[i][j] = f[i - 1][j] + g[i][0];
// cout << "+++++++++++++++" <<endl;
// cout << i << ' ' <<j <<endl;
// cout << f[i][j] << endl;
for (int ii = 0;ii <= j;ii++) {
f[i][j] = min(f[i][j],f[i - 1][j - ii] + g[i][ii]);
}
// cout << f[i][j] <<endl;
}
}
printf("%d\n",f[m][k]);
return 0;
}
T3 market
题面暂无
【Coding】
#include<bits/stdc++.h>
using namespace std;//这个代码,用来水四十分
typedef long long LL;//注意正序与倒序
const LL maxxn = 90000;//注意f的含义
const LL maxv = 300;//注意用二分
const LL maxc = 300;
LL n,m;
LL f[maxc+10][maxxn+10];
struct node {
LL c,w,t;
};
LL tt[maxc+10];
node a[maxc+10];
bool cc(LL x,LL y) {
return x < y;
}
bool cmp(node x,node y) {
return x.t < y.t;
}
inline LL Read() {
LL xx = 0;
LL ff = 1;
char ch = getchar();
while (ch > '9' || ch < '0') {
if (ch == '-') ff = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
xx = (xx << 1) + (xx << 3) + (ch ^ 48);
ch = getchar();
}
return xx * ff;
}
int main () {
freopen("market.in","r",stdin);
freopen("market.out","w",stdout);
n = Read(); m = Read();
for (LL i = 1;i <= n;i++) {
a[i].c = Read(); a[i].w = Read(); a[i].t = Read();
tt[i] = a[i].t;
}
sort(tt,tt + n + 1,cc);
sort(a,a + n + 1,cmp);
for (LL i = 1;i <= maxc * maxv;i++) {
f[0][i] = 999999999999ll;
}
for (LL i = 1;i <= n;i++) {
for (LL j = 1;j <= 300 * 300;j++) {
if (j >= a[i].w) f[i][j] = min(f[i - 1][j],f[i - 1][j - a[i].w] + a[i].c);
else f[i][j] = f[i - 1][j];//表示c
}
}
for (LL i=1; i<=n; ++i)
for (LL j=maxc*maxv-1; j>=0; --j)
f[i][j]=min(f[i][j],f[i][j+1]);
for (LL i = 1;i <= m;i++) {
LL aa = Read(); LL bb = Read();
LL ti = upper_bound(tt + 1,tt + n + 1,aa) - tt - 1;
LL ans = upper_bound(f[ti],f[ti] + n * 300 + 1,bb) - f[ti] - 1;//取出下标
printf("%lld\n",ans);
}
return 0;
}
T4 value
【coding】
#include<bits/stdc++.h>
using namespace std;//Õâ¸ö´úÂ룬ÓÃÀ´Ë®ËÄÊ®·Ö
typedef long long LL;
const int maxxn = 6000;
int n;
struct node {
int w,v;
};
node lonely[maxxn];
int f[maxxn][maxxn];
inline bool cmp (node x,node y) {
return x.v > y.v;
}
inline int Read() {
int xx = 0;
int ff = 1;
char ch = getchar();
while (ch > '9' || ch < '0') {
if (ch == '-') ff = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
xx = (xx << 1) + (xx << 3) + (ch ^ 48);
ch = getchar();
}
return xx * ff;
}
int main () {
freopen("value.in","r",stdin);
freopen("value.out","w",stdout);
n = Read();
for (int i = 1;i <= n;i++) {
lonely[i].w = Read(); lonely[i].v = Read();
}
sort(lonely + 1,lonely + 1 + n,cmp);
f[0][0] = 0;
f[1][1] = lonely[1].w;
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= i;j++) {
f[i][j] = max(f[i - 1][j],f[i - 1][j - 1] + lonely[i].w - (j - 1) * (lonely[i].v));
}
}
int ans = 0;
for (int i = 1;i <= n;i++) {
ans = max(ans,f[n][i]);
}
printf("%d\n",ans);
return 0;
}