代码随想录算法训练营第三十七天 | 738.单调递增的数字,968.监控二叉树,总结
1.1 738.单调递增的数字
思路:
- 一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9
- 找到置9的起始点,因为一旦发生非单调递增的情况,左边位上的值减一后,为取到最大值,之后的值都为9
class Solution {
public:
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
- 时间复杂度:O(n),n 为数字长度
- 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便
1.2 968.监控二叉树
思路:
- 摄像头不要放在叶子节点上
- 从叶子节点看:头结点放不放摄像头也就省下一个摄像头,叶子节点放不放摄像头省下了的摄像头数量是指数阶别的
- 局部最优:让叶子节点的父节点安摄像头,所用摄像头最少
- 整体最优:全部摄像头数量所用最少!
- 从下往上:使用后序遍历
- 三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
- 空节点:只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
// 版本一
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
// left == 0 && right == 0 左右节点无覆盖
// left == 1 && right == 0 左节点有摄像头,右节点无覆盖
// left == 0 && right == 1 左节点有无覆盖,右节点摄像头
// left == 0 && right == 2 左节点无覆盖,右节点覆盖
// left == 2 && right == 0 左节点覆盖,右节点无覆盖
if (left == 0 || right == 0) {
result++;
return 1;
}
// 情况3
// left == 1 && right == 2 左节点有摄像头,右节点有覆盖
// left == 2 && right == 1 左节点有覆盖,右节点有摄像头
// left == 1 && right == 1 左右节点都有摄像头
// 其他情况前段代码均已覆盖
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
// 版本二
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
if (left == 2 && right == 2) return 0;
else if (left == 0 || right == 0) {
result++;
return 1;
} else return 2;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
- 时间复杂度: O(n),需要遍历二叉树上的每个节点
- 空间复杂度: O(n)
1.3 总结
-
究竟什么题目是贪心呢?
如果找出局部最优并可以推出全局最优,就是贪心,如果局部最优都没找出来,就不是贪心,可能是单纯的模拟。
-
如何知道局部最优推出全局最优,有数学证明么?
手动模拟一下,如果找不出反例,就试试贪心。