dic_v1 = {"confirm":500,"heal":480}
print(dic_v1)
print(type(dic_v1))
print("将字典dic_v1转换为字符串".center(30,'='))
import json
str_v1 = json.dumps(dic_v1)
print("字典转换为字符串后的值:",str_v1)
print("使用dumps转换字典为字符串类型:",type(str_v1))
print("#将字符串转换为字典".center(30,'='))
dic_v2 = json.loads(str_v1)
print("字符串转换为字典后的值:",dic_v2)
print("使用loads转换字符串为字典类型:",type(dic_v2))
dic_v3 = {"确诊":1000,"治愈":800,"死亡":200}
for dic_key in dic_v3.keys():
print(dic_key)
for dic_value in dic_v3.values():
print(dic_value)
for dic_item in dic_v3.items():
print(dic_item)
print("访问字典中的某个元素",dic_v3['治愈'])
print(dic_v3.get("治愈","没有您的访问内容"))
dic_v4 = {"学生1":{"姓名":"沃登","年龄":21,"性别":"男"},
"学生2":{"姓名":"沃尔登","年龄":22,"性别":"男"}}
dic_v5 = [{"姓名":"沃登","年龄":21,"性别":"男"},
{"姓名":"沃尔登","年龄":22,"性别":"男"}]
import pandas as pd
stu_df = pd.DataFrame(dic_v4)
stu_df.to_csv("student.csv")
pd.DataFrame(dic_v4)
dic_v6 = {'confirm': 61,'heal': 195,'dead': 4}
dic_v7 = {'confirm': "确诊",'heal': "治愈",'dead':"死亡"}
dic_v8 = {}
for dic_v6_key in dic_v6.keys():
dic_v8[dic_v7[dic_v6_key]] = dic_v6[dic_v6_key]
dic_v8
name = '沃尔德'
age = 20
tel = '12345678910'
print('我叫%s,年龄%d,电话是%s'%(name,age,tel))
print('我叫{},年龄{},电话是{}'.format(name,age,tel))
print('我叫{0},年龄{1},电话是{2}'.format(name,age,tel))
import pandas as pd
file_name1 = open('美国_country_real_data.csv',encoding = 'utf-8')
file_v1 = pd.read_csv(file_name1)
file_v2 = file_v1.drop('Unnamed: 0',axis=1)
file_v2[['名称','总计确诊']]
file_v2.loc[:,['名称','总计确诊','总计治愈']]
file_v2.loc[file_v2['总计治愈']>50000,['名称','总计确诊','总计治愈']]
import pandas as pd
file_name1 = open('china_hist_data.csv',encoding = 'utf-8')
file_v1 = pd.read_csv(file_name1)
file_v2 = file_v1.drop('Unnamed: 0',axis=1)
file_v2['时间']=pd.to_datetime(file_v2['时间'])
file_v2.dtypes
file_v4 = file_v2.iloc[:,[1,2,3,11,12,9,15]]
file_v5 = file_v4.set_index('时间')
file_v5
file_v5.index = file_v5.index.month
file_v5.loc[:,['当天疑似','当天确诊']].groupby(file_v5.index).sum()
file_v6 = file_v4.set_index('时间')
file_v6.index = file_v6.index.day
file_v6
file_v6.loc[:,['当天疑似','当天确诊']].groupby(file_v6.index).agg(['sum','max','min'])
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
x = ['治愈','死亡','确诊']
y = [100,150,300]
y1 = [500,200,800]
fig = plt.figure(figsize=(8,6),dpi=80)
plt.title('疫情数据')
plt.xlabel('类型')
plt.ylabel('人数')
plt.ylim(0,1000)
plt.yticks(range(100,1000,100))
plt.legend(['2月12日','2月13日'])
plt.plot(x,y,'r--',
x,y1,'b:')
for i in range(len(x)):
plt.annotate(xy = (i,y[i]+5),s=y[i])
plt.annotate(xy = (i,y1[i]+5),s=y1[i])
plt.show()
import pandas as pd
city_code = {'Beijing':'010','Tianjian':'022','Guangzhou':'020','Dalian':'0411','Shanghai':'021','Changchun':'0431'}
city_se = pd.Series(city_code)
city_se