利用python语言实现AR

本文介绍如何利用Python实现AR,包括识别参考平面、推导坐标转换、理解AR概念以及解决运行中遇到的问题。通过计算照相机位置和姿态,放置3D模型,例如在目标图像上叠加立方体或茶壶。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先了解如何利用python语言实现以平面和标记物进行姿态估计

本实验只是先实现一个简单的小例子。简单来说就是先识别出图像中的参考面,再拍摄一张目标图像,将参考面顶部的3D模型投影到目标图像上。
大致步骤如下:

  1. 识别参考平面
    在这一步中,我们所需要做的事就是提取参考图像和目标图像的sift特征,然后使用RANSAC算法稳健地估计单应性矩阵。
    代码如下:
#计算特征
sift.process_image('D:输入图片/book_frontal.JPG', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')

sift.process_image('D:输入图片/book_per.JPG', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')

#匹配特征,并计算单应性矩阵
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)

model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)

由上面代码可得到单应性矩阵,它能够将一幅图像中标记物的点映射到另一幅图像中的对应点。还需要建立X-Y(Z=0)三维坐标系,标记物在Z=0平面上,原点在标记物的某个位置上。

  1. 从单应性推导出从参考面坐标系到目标图像坐标系的转换
    在进行坐标转换之前,为了检验单应性矩阵结果的正确性,需要将一些三维物体放置在目标图像上,本实验使用了一个立方体。产生立方体的代码如下:
def cube_points(c, wid):

    p = []
    p.append([c[0]-wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]+wid, c[2]-wid])
    p.append([c[0]+wid, c[1]-wid, c[2]-wid])
    p.append([c[0]-wid, c[1]-wid, c[2]-wid])

    p.append([c[0]-wid, c[1]-wid, c[2]+wid]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值