矩阵归一化的好处

				版权声明:本文为博主原创文章,未经博主允许不得转载。					https://blog.youkuaiyun.com/u010381985/article/details/59490102				</div>
							            <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
					<div class="htmledit_views" id="content_views">

最近在看Yang大牛稀疏表示论文的代码,发现里面很多的操作的用到了矩阵的列归一化,这里谈一谈列归一化的实现,以及其带来的好处。


矩阵的列归一化,就是将矩阵每一列的值,除以每一列所有元素平方和的绝对值,这样做的结果就是,矩阵每一列元素的平方和为1了。


举个例子,矩阵[1,2,3]',将其归一化的结果就是[0.2673,0.5345,0.8018]。其平方和就为1了。


Yang在代码中,将那些平方和为0,以及平方和很小的列向量的剔除了,不用做训练,所以最后训练样本矩阵中的每一列就是一个训练图像块,行数代表了图像块的大小。


之前一直不清楚,为什么要做这么多的归一化,直到想到了对称矩阵(请原谅数学不好的我,在理解的路上磕磕绊绊)。


假设通过上述归一化处理的样本集合为X,x的没一列的平方和都是1,假设X是25*1000的一个矩阵好了,那么X‘为一个1000*25的矩阵,Yang等人的方法里用到了

A=X’*X。那么通过上面的那些变化,X的每列元素的平方和都是1,那么A的对角线元素都是1,且A是关于对角线对称的。那么A就是一个对角线元素全为1的对称矩阵,而实对称矩阵具有如下的性质:


这就为之后的处理奠定了基础。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值