Mnist数据集-卷积神经网络

本文介绍了卷积神经网络(CNN)的基本原理,包括局部感知、参数共享和池化的概念。重点阐述了经典的LeNet5模型在手写字体识别中的应用,展示了其7层结构及每层的功能。通过对Mnist数据集的训练,得出高准确率的结果,并分析了部分识别错误的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络

卷积神经网络( Convolutional Neural Network, CNN):
是一种常见的深度学习架构,受生物自然视觉认知机制(动物视觉皮层细胞负责检测光学信号)启发而来,是一种特殊的多层前馈神经网络。它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
卷积神经网络的主要组成:
卷积层(Convolutional layer),卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。

池化层(Pooling),它实际上一种形式的向下采样。有多种不同形式的非线性池化函数,而其中最大池化(Max pooling)和平均采样是最为常见的

全连接层(Full connection), 与普通神经网络一样的连接方式,一般都在最后几层

pooling层的作用:
Pooling层相当于把一张分辨率较高的图片转化为分辨率较低的图片;
pooling层可进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中参数的目的。

CNN有以下三个特点:局部感知、参数共享、池化。
1、局部感知
人类对外界的认知一般是从局部到全局、从片面到全面,类似的,在机器识别图像时也没有必要把整张图像按像素全部都连接到神经网络中,在图像中也是局部周边的像素联系比较紧密,而距离较远的像素则相关性较弱,因此可以采用局部连接的模式(将图像分块连接,这样能大大减少模型的参数),如下图所示:
在这里插入图片描述
2、参数(权值)共享
每张自然图像(人物、山水、建筑等)都有其固有特性,也就是说,图像其中一部分的统计特性与其它部分是接近的。这也意味着这一部分学习的特征也能用在另一部分上,能使用同样的学习特征。因此,在局部连接中隐藏层的每一个神经元连接的局部图像的权值参数(例如5×5),将这些权值参数共享给其它剩下的神经元使用,那么此时不管隐藏层有多少个神经元,需要训练的参数就是这个局部图像的权限参数(例如5×5),也就是卷积核的大小,这样大大减少了训练参数。如图:
在这里插入图片描述
3、池化
随着模型网络不断加深,卷积核越来越多,要训练的参数还是很多,而且直接拿卷积核提取的特征直接训练也容易出现过拟合的现象。回想一下,之所以对图像使用卷积提取特征是因为图像具有一种“静态性”的属性,因此,一个很自然的想法就是对不同位置区域提取出有代表性的特征(进行聚合统计,例如最大值、平均值等),这种聚合的操作就叫做池化,池化的过程通常也被称为特征映射的过程(特征降维),如图:
在这里插入图片描述
了解了CNN三个特点之后,下面来介绍一下CNN的经典模型:手写字体识别模型LeNet5。
LeNet-5共有7层(不包括输入层),每层都包含不同数量的训练参数,如下图所示。
在这里插入图片描述
LeNet-5中主要有2个卷积层、2个下抽样层(池化层)、3个全连接层。
第一层:卷积层C1
C1层是卷积层,形成6个特征图谱。卷积的输入区域大小是5x5,每个特征图谱内参数共享,即每个特征图谱内只使用一个共同卷积核,卷积核有5x5个连接参数加上1个偏置共26个参数。卷积区域每次滑动一个像素,这样卷积层形成的每个特征图谱大小是(32-5)/1+1=28x28。C1层共有26x6=156个训练参数,有(5x5+1)x28x28x6=122304个连接。C1层的连接结构如下所示。
在这里插入图片描述
第二层:池化层S2
S2层是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息)。C1层的6个28x28的特征图谱分别进行以2x2为单位的下抽样得到6个14x14((28-2)/2+1)的图。每个特征图谱使用一个下抽样核。5x14x14x6=5880个连接。S2层的网络连接结构如下右图 :
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值