滑动窗口算法

本文探讨了滑动窗口算法在处理字符串问题中的应用,包括查找子串、判断子串是否存在以及寻找字母异位词。通过使用哈希表记录字符出现的次数,动态调整窗口边界,实现了高效解决方案。算法核心在于窗口内数据的更新和窗口收缩的时机判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先提前总结一下

  1. 有两个map ,一个是window哈希表,存的是子串中字符在主串中出现的次数,need哈希表存的是子串中字符出现的次数,还有一个变量valid,存的是window中字符出现的次数满足need中字符次数的个数,valid等于need哈希表大小,那么window就圆满了
  2. 两个while判断必须存在 而且其中第二个while判断条件是重中之重
  3. window哈希表必须存在,因为need哈希有可能没有
  4. window[c]++ 与 window[c–]必须存在
  5. window[++]与window[–]在有Need哈希表的情况下,是在need中包含这个字符的时候才++或–的,如果没有need哈希表,有时候就可以直接window[c]++或window[c]–
  6. 有子串的话,主要是在第二个while条件改,还有一个就是取出左边元素前面进行修改! 没有子串的话,主要还是在第二个while循环条件处修改,然后把所有关于有子串的代码全部删掉,但要保留window[c]++和–的操作
    在这里插入图片描述
string minWindow(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    // 记录最小覆盖子串的起始索引及长度
    int start = 0, len = INT_MAX;
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (valid == need.size()) {
            // 在这里更新最小覆盖子串
            if (right - left < len) {
                start = left;
                len = right - left;
            }
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }                    
        }
    }
    // 返回最小覆盖子串
    return len == INT_MAX ?
        "" : s.substr(start, len);
}

在这里插入图片描述

// 判断 s 中是否存在 t 的排列
bool checkInclusion(string t, string s) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 在这里判断是否找到了合法的子串
            if (valid == need.size())
                return true;
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    // 未找到符合条件的子串
    return false;
}

在这里插入图片描述

vector<int> findAnagrams(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    vector<int> res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

在这里插入图片描述

int lengthOfLongestSubstring(string s) {
    unordered_map<char, int> window;

    int left = 0, right = 0;
    int res = 0; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        window[c]++;
        // 判断左侧窗口是否要收缩
        while (window[c] > 1) {
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            window[d]--;
        }
        // 在这里更新答案
        res = max(res, right - left);
    }
    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值