简单的总结zookeeper

1.功能

分布式同步

配置管理

集群管理

命名管理

队列管理

2.实现

数据模型(znode)+原语+通知机制(watch)

Znode:

[外链图片转存失败(img-FIvIHuUU-1569485738656)(assets\35-356798741.png)]

介绍:

ZooKeeper的数据模型,在结构上和标准文件系统的非常相似,都是采用这种树形层次结构,ZooKeeper树中的每个节点被称为—Znode。和文件系统的目录树一样,ZooKeeper树中的每个节点可以拥有子节点。

1.和Linux的区别:

(1) 引用方式

Zonde通过路径引用,如同Unix中的文件路径。**路径必须是绝对的,因此他们必须由斜杠字符来开头。**除此以外,他们必须是唯一的,也就是说每一个路径只有一个表示,因此这些路径不能改变。在ZooKeeper中,路径由Unicode字符串组成,并且有一些限制。字符串"/zookeeper"用以保存管理信息,比如关键配额信息。

(2) Znode结构

ZooKeeper命名空间中的Znode,兼具文件和目录两种特点。既像文件一样维护着数据、元信息、ACL、时间戳等数据结构,又像目录一样可以作为路径标识的一部分。图中的每个节点称为一个Znode。 每个Znode由3部分组成:

stat:此为状态信息, 描述该Znode的版本, 权限等信息

data:与该Znode关联的数据

children:该Znode下的子节点

ZooKeeper虽然可以关联一些数据,但并没有被设计为常规的数据库或者大数据存储,相反的是,它用来管理调度数据,比如分布式应用中的配置文件信息、状态信息、汇集位置等等。这些数据的共同特性就是它们都是很小的数据,通常以KB为大小单位。ZooKeeper的服务器和客户端都被设计为严格检查并限制每个Znode的数据大小至多1M,但常规使用中应该远小于此值。

(3) 数据访问

ZooKeeper中的每个节点存储的数据要被原子性的操作。也就是说读操作将获取与节点相关的所有数据,写操作也将替换掉节点的所有数据。另外,每一个节点都拥有自己的ACL(访问控制列表),这个列表规定了用户的权限,即限定了特定用户对目标节点可以执行的操作。

(4) 节点类型

ZooKeeper中的节点有两种,分别为临时节点永久节点。节点的类型在创建时即被确定,并且不能改变。

**① 临时节点:**该节点的生命周期依赖于创建它们的会话。一旦会话(Session)结束,临时节点将被自动删除,当然可以也可以手动删除。虽然每个临时的Znode都会绑定到一个客户端会话,但他们对所有的客户端还是可见的。另外,ZooKeeper的临时节点不允许拥有子节点。

**② 永久节点:**该节点的生命周期不依赖于会话,并且只有在客户端显示执行删除操作的时候,他们才能被删除。

(5) 顺序节点

当创建Znode的时候,用户可以请求在ZooKeeper的路径结尾添加一个递增的计数。这个计数对于此节点的父节点来说是唯一的,它的格式为"%10d"(10位数字,没有数值的数位用0补充,例如"0000000001")。当计数值大于232-1时,计数器将溢出。

(6) 观察

客户端可以在节点上设置watch,我们称之为监视器。当节点状态发生改变时(Znode的增、删、改)将会触发watch所对应的操作。当watch被触发时,ZooKeeper将会向客户端发送且仅发送一条通知,因为watch只能被触发一次,这样可以减少网络流量。

2.ZooKeeper中的时间

致使ZooKeeper节点状态改变的每一个操作都将使节点接收到一个Zxid格式的时间戳,并且这个时间戳全局有序。也就是说,每个对节点的改变都将产生一个唯一的Zxid。如果Zxid1的值小于Zxid2的值,那么Zxid1所对应的事件发生在Zxid2所对应的事件之前。实际上,ZooKeeper的每个节点维护者三个Zxid值,为别为:cZxid、mZxid、pZxid。

cZxid: 是节点的创建时间所对应的Zxid格式时间戳。

② mZxid:是节点的修改时间所对应的Zxid格式时间戳。

③ pZxid: 是与 该节点的子节点(或该节点)的最近一次 创建 / 删除 的时间戳对应

实现中Zxid是一个64为的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch。低32位是个递增计数

(2) 版本号

对节点的每一个操作都将致使这个节点的版本号增加。每个节点维护着三个版本号,他们分别为:

① version:节点数据版本号

② cversion:子节点版本号

③ aversion:节点所拥有的ACL版本号

3.节点属性

[外链图片转存失败(img-7Wa0hM0b-1569485738656)(assets\856-38150331.png)]

4.操作

[外链图片转存失败(img-v9ikty5W-1569485738657)(assets\07-650930580.png)]

更新ZooKeeper操作是有限制的。delete或setData必须明确要更新的Znode的版本号,我们可以调用exists找到。如果版本号不匹配,更新将会失败。

更新ZooKeeper操作是非阻塞式的。因此客户端如果失去了一个更新(由于另一个进程在同时更新这个Znode),他可以在不阻塞其他进程执行的情况下,选择重新尝试或进行其他操作。

尽管ZooKeeper可以被看做是一个文件系统,但是处于便利,摒弃了一些文件系统地操作原语。因为文件非常的小并且使整体读写的,所以不需要打开、关闭或是寻地的操作。

Watch:

1.watch概述

ZooKeeper可以为所有的读操作设置watch,这些读操作包括:exists()、getChildren()及getData()。watch事件是一次性的触发器,当watch的对象状态发生改变时,将会触发此对象上watch所对应的事件。watch事件将被异步地发送给客户端,并且ZooKeeper为watch机制提供了有序的一致性保证。理论上,客户端接收watch事件的时间要快于其看到watch对象状态变化的时间。

2.watch类型

ZooKeeper所管理的watch可以分为两类:

数据watch(data watches):getDataexists负责设置数据watch

孩子watch(child watches):getChildren负责设置孩子watch

我们可以通过操作返回的数据来设置不同的watch:

**① getData和exists:**返回关于节点的数据信息

**② getChildren:**返回孩子列表

因此

一个成功的setData操作将触发Znode的数据watch

一个成功的create操作将触发Znode的数据watch以及孩子watch

一个成功的delete操作将触发Znode的数据watch以及孩子watch

3. watch注册与处触发

下图 watch设置操作及相应的触发器如图下图所示:

[外链图片转存失败(img-9QWaFKSd-1569485738657)(assets\6-1651342915.png)]

exists操作上的watch,在被监视的Znode创建删除数据更新时被触发。

getData操作上的watch,在被监视的Znode删除数据更新时被触发。在被创建时不能被触发,因为只有Znode一定存在,getData操作才会成功。

getChildren操作上的watch,在被监视的Znode的子节点创建删除,或是这个Znode自身被删除时被触发。可以通过查看watch事件类型来区分是Znode,还是他的子节点被删除:NodeDelete表示Znode被删除,NodeDeletedChanged表示子节点被删除。

Watch由客户端所连接的ZooKeeper服务器在本地维护,因此watch可以非常容易地设置、管理和分派。当客户端连接到一个新的服务器时,任何的会话事件都将可能触发watch。另外,当从服务器断开连接的时候,watch将不会被接收。但是,当一个客户端重新建立连接的时候,任何先前注册过的watch都会被重新注册。

4.需要注意的几点

Zookeeper的watch实际上要处理两类事件:

① 连接状态事件(type=None, path=null)

这类事件不需要注册,也不需要我们连续触发,我们只要处理就行了。

② 节点事件

节点的建立,删除,数据的修改。它是one time trigger,我们需要不停的注册触发,还可能发生事件丢失的情况。

上面2类事件都在Watch中处理,也就是重载的process(Event event)

节点事件的触发,通过函数exists,getData或getChildren来处理这类函数,有双重作用:

① 注册触发事件

② 函数本身的功能

函数的本身的功能又可以用异步的回调函数来实现,重载processResult()过程中处理函数本身的的功能。

5.监听工作原理

ZooKeeper 的 Watcher 机制主要包括客户端线程、客户端 WatcherManager、Zookeeper 服务器三部分。客户端在向 ZooKeeper 服务器注册的同时,会将 Watcher 对象存储在客户端的 WatcherManager 当中。当 ZooKeeper 服务器触发 Watcher 事件后,会向客户端发送通知, 客户端线程从 WatcherManager 中取出对应的 Watcher 对象来执行回调逻辑

[外链图片转存失败(img-4lxpRGJj-1569485738657)(assets\6-2010659721.png)]

6.HA的NN的切换

1) Master启动

在引入了Zookeeper以后我们启动了两个主节点,“主节点-A"和"主节点-B"他们启动以后,都向ZooKeeper去注册一个节点。我们假设"主节点-A"锁注册地节点是"master-00001”,“主节点-B"注册的节点是"master-00002”,注册完以后进行选举,编号最小的节点将在选举中获胜获得锁成为主节点,也就是我们的"主节点-A"将会获得锁成为主节点,然后"主节点-B"将被阻塞成为一个备用节点。那么,通过这种方式就完成了对两个Master进程的调度。

图7.6 ZooKeeper Master选举

[外链图片转存失败(img-YLmDdr5f-1569485738658)(assets\535008567950.png)]

(2) Master故障

如果"主节点-A"挂了,这时候他所注册的节点将被自动删除,ZooKeeper会自动感知节点的变化,然后再次发出选举,这时候"主节点-B"将在选举中获胜,替代"主节点-A"成为主节点。

图7.7 ZooKeeper Master选举

[外链图片转存失败(img-r3ckg8GB-1569485738658)(assets\535012773122.png)]

(3) Master 恢复

图7.8 ZooKeeper Master选举

[外链图片转存失败(img-dVvf9E83-1569485738658)(assets\535016997293.png)]

如果主节点恢复了,他会再次向ZooKeeper注册一个节点,这时候他注册的节点将会是"master-00003",ZooKeeper会感知节点的变化再次发动选举,这时候"主节点-B"在选举中会再次获胜继续担任"主节点","主节点-A"会担任备用节点。

特点:

ZooKeeper 作为一个集群提供数据一致的协调服务,自然,最好的方式就是在整个集群中的 各服务节点进行数据的复制和同步。

1.数据复制的好处

1、容错:一个节点出错,不至于让整个集群无法提供服务

2、扩展性:通过增加服务器节点能提高 ZooKeeper 系统的负载能力,把负载分布到多个节点上

3、高性能:客户端可访问本地 ZooKeeper 节点或者访问就近的节点,依次提高用户的访问速度

2.设计目的

1、最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

2、可靠性:具有简单、健壮、良好的性能,如果消息被到一台服务器接受,那么它将被所有的服务器接受。

3、实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4、等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5、原子性:更新只能成功或者失败,没有中间状态。

6、顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

3.应用场景

1.命名服务

命名服务是分布式系统中较为常见的一类场景,分布式系统中,被命名的实体通常可以是集 群中的机器、提供的服务地址或远程对象等,通过命名服务,客户端可以根据指定名字来获 取资源的实体、服务地址和提供者的信息。Zookeeper 也可帮助应用系统通过资源引用的方 式来实现对资源的定位和使用,广义上的命名服务的资源定位都不是真正意义上的实体资源, 在分布式环境中,上层应用仅仅需要一个全局唯一的名字。Zookeeper 可以实现一套分布式 全局唯一 ID 的分配机制。

[外链图片转存失败(img-e6ftnCsQ-1569485738658)(assets\8-1850309318.png)]

2.配置管理

程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。现在 把这些配置全部放到 ZooKeeper 上去,保存在 ZooKeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 ZooKeeper 的通知,然后从 ZooKeeper 获取新的配置信息应用到系统中就好

[外链图片转存失败(img-mEaaswkn-1569485738659)(assets\89-956578368.png)]

3.集群管理

所谓集群管理无在乎两点:是否有机器退出和加入、选举 master

对于第一点,所有机器约定在父目录 GroupMembers 下创建临时目录节点,然后监听父目录 节点的子节点变化消息。一旦有机器挂掉,该机器与 ZooKeeper 的连接断开,其所创建的 临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知 道:有兄弟挂了。新机器加入也是类似,所有机器收到通知:新兄弟目录加入,又多了个新 兄弟。

对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小 的机器作为 master 就好。当然,这只是其中的一种策略而已,选举策略完全可以由管理员 自己制定。

[外链图片转存失败(img-ZAGWCIok-1569485738659)(assets\17-525375570.png)]

4.分布式锁

有了 ZooKeeper 的一致性文件系统,锁的问题变得容易。 锁服务可以分为两三类

一个是写锁,对写加锁,保持独占,或者叫做排它锁,独占锁

一个是读锁,对读加锁,可共享访问,释放锁之后才可进行事务操作,也叫共享锁

一个是控制时序,叫时序锁

对于第一类,我们将 ZooKeeper 上的一个 znode 看作是一把锁,通过 createznode 的方式来 实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了 这把锁。用完删除掉自己创建的 distribute_lock 节点就释放出锁

对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录 节点,和选 master 一样,编号最小的获得锁,用完删除,依次有序

[外链图片转存失败(img-Yzg8WA1p-1569485738659)(assets\3-1074371713.png)]

5.队列管理

两种类型的队列:

1、同步队列:当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。

2、先进先出队列:队列按照 FIFO 方式进行入队和出队操作。

第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。

第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。 同步队列的流程图:

[外链图片转存失败(img-PBI3vkGV-1569485738659)(assets\93-509462062.png)]

4.角色

[外链图片转存失败(img-RubTBw85-1569485738659)(assets\58-933789136.png)]

ZooKeeper与客户端

[外链图片转存失败(img-KNjaiQzP-1569485738660)(assets\69-965453511.png)]

每个Server在工作过程中有三种状态:

LOOKING:当前Server不知道leader是谁,正在搜寻

LEADING:当前Server即为选举出来的leader

FOLLOWING:leader已经选举出来,当前Server与之同步

Zookeeper节点数据操作流程

[外链图片转存失败(img-cvvHnc9b-1569485738660)(assets\70-414957166.png)]

注:

1.在Client向Follwer发出一个写的请求

2.Follwer把请求发送给Leader

3.Leader接收到以后开始发起投票并通知Follwer进行投票

4.Follwer把投票结果发送给Leader

5.Leader将结果汇总后如果需要写入,则开始写入同时把写入操作通知给Leader,然后commit;

6.Follwer把请求结果返回给Client

Follower主要有四个功能:

1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

2 .接收Leader消息并进行处理;

3 .接收Client的请求,如果为写请求,发送给Leader进行投票;

4 .返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

1 .PING消息: 心跳消息;

2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;

3 .COMMIT消息:服务器端最新一次提案的信息;

4 .UPTODATE消息:表明同步完成;

5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;

6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

5.Paxos 算法(ZAB 协议)

Paxos 算法是莱斯利•兰伯特(英语:Leslie Lamport)于 1990 年提出的一种基于消息传递且 具有高度容错特性的一致性算法。

分布式系统中的节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing)。基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会 慢、被杀死或者重启,消息可能会延迟、丢失、重复,在基础 Paxos 场景中,先不考虑可能 出现消息篡改即拜占庭错误(Byzantine failure,即虽然有可能一个消息被传递了两次,但是 绝对不会出现错误的消息)的情况。Paxos 算法解决的问题是在一个可能发生上述异常的分 布式系统中如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏决议一致性。

Paxos 算法使用一个希腊故事来描述,在 Paxos 中,存在三种角色,分别为

Proposer(提议者,用来发出提案 proposal)

Acceptor(接受者,可以接受或拒绝提案)

Learner(学习者,学习被选定的提案,当提案被超过半数的 Acceptor 接受后为被批准)

下面更精确的定义 Paxos 要解决的问题:

1、决议(value)只有在被 proposer 提出后才能被批准

2、在一次 Paxos 算法的执行实例中,只批准(chose)一个 value

3、learner 只能获得被批准(chosen)的 value

ZooKeeper 的选举算法有两种:一种是基于 Basic Paxos(Google Chubby 采用)实现的,另外 一种是基于 Fast Paxos(ZooKeeper 采用)算法实现的。系统默认的选举算法为 Fast Paxos。 并且 ZooKeeper 在 3.4.0 版本后只保留了 FastLeaderElection 算法。

ZooKeeper 的核心是原子广播,这个机制保证了各个 Server 之间的同步。实现这个机制的协 议叫做 ZAB 协议(Zookeeper Atomic BrodCast)。 ZAB 协议有两种模式,它们分别是崩溃恢复模式(选主)和原子广播模式(同步)

1、当服务启动或者在领导者崩溃后,ZAB 就进入了恢复模式,当领导者被选举出来,且大 多数 Server 完成了和 leader 的状态同步以后,恢复模式就结束了。状态同步保证了 leader 和 follower 之间具有相同的系统状态。

2、当 ZooKeeper 集群选举出 leader 同步完状态退出恢复模式之后,便进入了原子广播模式。 所有的写请求都被转发给 leader,再由 leader 将更新 proposal 广播给 follower

为了保证事务的顺序一致性,zookeeper 采用了递增的事务 id 号(zxid)来标识事务。所有 的提议(proposal)都在被提出的时候加上了 zxid。实现中 zxid 是一个 64 位的数字,它高 32 位是 epoch 用来标识 leader 关系是否改变,每次一个 leader 被选出来,它都会有一个新 的 epoch,标识当前属于那个 leader 的统治时期。低 32 位用于递增计数。

这里给大家介绍以下 Basic Paxos 流程:

1、选举线程由当前 Server 发起选举的线程担任,其主要功能是对投票结果进行统计,并选 出推荐的 Server

2、选举线程首先向所有 Server 发起一次询问(包括自己)

3、选举线程收到回复后,验证是否是自己发起的询问(验证 zxid 是否一致),然后获取对方 的 serverid(myid),并存储到当前询问对象列表中,最后获取对方提议的 leader 相关信息 (serverid,zxid),并将这些信息存储到当次选举的投票记录表中

4、收到所有 Server 回复以后,就计算出 id 最大的那个 Server,并将这个 Server 相关信息设 置成下一次要投票的 Server

5、线程将当前 id 最大的 Server 设置为当前 Server 要推荐的 Leader,如果此时获胜的 Server 获得 n/2 + 1 的 Server 票数, 设置当前推荐的 leader 为获胜的 Server,将根据获胜的 Server 相关信息设置自己的状态,否则,继续这个过程,直到 leader 被选举出来。

通过流程分析我们可以得出:要使 Leader 获得多数 Server 的支持,则 Server 总数必须是奇 数 2n+1,且存活的 Server 的数目不得少于 n+1。 每个 Server 启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚 启动的 server 还会从磁盘快照中恢复数据和会话信息,zk 会记录事务日志并定期进行快照, 方便在恢复时进行状态恢复。 Fast Paxos 流程是在选举过程中,某 Server 首先向所有 Server 提议自己要成为 leader,当其 它 Server 收到提议以后,解决 epoch 和 zxid 的冲突,并接受对方的提议,然后向对方发送 接受提议完成的消息,重复这个流程,最后一定能选举出 Leader

6.ZooKeeper 的选主机制

选择机制中的概念

服务器ID

比如有三台服务器,编号分别是1,2,3。

编号越大在选择算法中的权重越大。

数据ID

服务器中存放的最大数据ID.

值越大说明数据越新,在选举算法中数据越新权重越大。

逻辑时钟

或者叫投票的次数,同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加,然后与接收到的其它服务器返回的投票信息中的数值相比,根据不同的值做出不同的判断。

选举状态

  • LOOKING,竞选状态。
  • FOLLOWING,随从状态,同步leader状态,参与投票。
  • OBSERVING,观察状态,同步leader状态,不参与投票。
  • LEADING,领导者状态。

选举消息内容

在投票完成后,需要将投票信息发送给集群中的所有服务器,它包含如下内容。

  • 服务器ID
  • 数据ID
  • 逻辑时钟
  • 选举状态

选举流程图

因为每个服务器都是独立的,在启动时均从初始状态开始参与选举,下面是简易流程图。

[外链图片转存失败(img-VassVaj9-1569485738660)(assets\3-1237203995.png)]

ZooKeeper 的全新集群选主

以一个简单的例子来说明整个选举的过程:假设有五台服务器组成的 zookeeper 集群,它们 的 serverid 从 1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点 上,都是一样的。假设这些服务器依序启动,来看看会发生什么

1、服务器 1 启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的 选举状态一直是 LOOKING 状态

2、服务器 2 启动,它与最开始启动的服务器 1 进行通信,互相交换自己的选举结果,由于 两者都没有历史数据,所以 id 值较大的服务器 2 胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是 3),所以服务器 1、2 还是继续保持 LOOKING 状态

3、服务器 3 启动,根据前面的理论分析,服务器 3 成为服务器 1,2,3 中的老大,而与上面不 同的是,此时有三台服务器(超过半数)选举了它,所以它成为了这次选举的 leader

4、服务器 4 启动,根据前面的分析,理论上服务器 4 应该是服务器 1,2,3,4 中最大的,但是 由于前面已经有半数以上的服务器选举了服务器 3,所以它只能接收当小弟的命了

5、服务器 5 启动,同 4 一样,当小弟

ZooKeeper 的非全新集群选主

那么,初始化的时候,是按照上述的说明进行选举的,但是当 zookeeper 运行了一段时间之 后,有机器 down 掉,重新选举时,选举过程就相对复杂了。

需要加入数据 version、serverid 和逻辑时钟。

数据 version:数据新的 version 就大,数据每次更新都会更新 version

server id:就是我们配置的 myid 中的值,每个机器一个

逻辑时钟:这个值从 0 开始递增,每次选举对应一个值,也就是说:如果在同一次选举中, 那么这个值应该是一致的;逻辑时钟值越大,说明这一次选举 leader 的进程更新,也就是 每次选举拥有一个 zxid,投票结果只取 zxid 最新的

选举的标准就变成:

1、逻辑时钟小的选举结果被忽略,重新投票

2、统一逻辑时钟后,数据 version 大的胜出

3、数据 version 相同的情况下,server id 大的胜出

那么,初始化的时候,是按照上述的说明进行选举的,但是当 zookeeper 运行了一段时间之 后,有机器 down 掉,重新选举时,选举过程就相对复杂了。

需要加入数据 version、serverid 和逻辑时钟。

数据 version:数据新的 version 就大,数据每次更新都会更新 version

server id:就是我们配置的 myid 中的值,每个机器一个

逻辑时钟:这个值从 0 开始递增,每次选举对应一个值,也就是说:如果在同一次选举中, 那么这个值应该是一致的;逻辑时钟值越大,说明这一次选举 leader 的进程更新,也就是 每次选举拥有一个 zxid,投票结果只取 zxid 最新的

选举的标准就变成:

1、逻辑时钟小的选举结果被忽略,重新投票

2、统一逻辑时钟后,数据 version 大的胜出

3、数据 version 相同的情况下,server id 大的胜出

根据这个规则选出 leader。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值