1085 Perfect Sequence (25 分)
Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤105) is the number of integers in the sequence, and p(≤109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
题目大意:
给出长度为n的序列以及一个参数p,要求选出一定的数字使M<= m * p,M为序列最大值,m为序列最小值,求最多能有多少个数字。
思路:
很明显是一道可以用双指针来解决的题目。
让两个指针都指向起始点,那么先固定I , 让j 动起来,找到最大的位置。随后再让i++, 走向各大的最小数,此时j肯定又能够再变大即动起来。
参考代码:
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int n,p;
vector<int> a;
int main(){
scanf("%d%d",&n,&p);
a.resize(n);
for(int i = 0;i < n; ++i) scanf("%d", &a[i]);
sort(a.begin(), a.end());
int i = 0, j = 0,cnt = 0;
while(i < n && j < n){
while(a[i] * p >= a[j] && j < n) j++;
cnt = max(cnt , j - i);
i++;
}
printf("%d", cnt);
return 0;
}