Tensorflow2.0.0 GPU版本避坑安装+全套资源链接

本文介绍Tensorflow2.0.0 GPU版本的避坑安装方法。先安装较老版本的anaconda,再安装cuda10.0和cudnn10.0,修改环境变量path,接着在base环境下安装tensorflow2.0,最后进行测试,若不报错且结果返回True则安装成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow2.0.0 GPU版本避坑安装

tensorflow2.0 GPU版本的对应cuda驱动为10.0版本,还有需要安装pytorch GPU的小伙伴请绕道,因为需要10.1及以上版本的cuda才能装。

链接: https://pan.baidu.com/s/1ZZgjj6mmEARmtxQTTPqe2Q
提取码:zabs

第一步:环境配置,安装anaconda

建议安装较老版本的anaconda,因为新的版本自带的python版本也高,tensorflow2.0的最高适应python版本为3.6,链接里的版本是2019年十月份版本。避免后面出错建议安装较老版本。

第二步:安装cuda10.0

安装cuda时只能装c盘,空间不够的需要腾一腾,安装选择选项里建议全安装,少装会可能会引起不必要的麻烦

第三步:安装cudnn10.0

将压缩包解压,CUDA重命名为cudnn765,复制到该路径下

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

如图:
在这里插入图片描述

第四步:修改环境变量path

先右击我的电脑,打开属性,点击高级系统属性,点击环境变量,找到path选中,再点击编辑,如下图:
在这里插入图片描述
然后然后点击新建,再复制cudnn765中bin所在文件夹的路径

 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\cudnn765\bin 

粘贴,然后点击上移,移到最顶端。bin的路径如图:
在这里插入图片描述
具体操作如图:第一步第二步已经用蓝色数字标出
在这里插入图片描述

第五步:虚拟环境下安装tensorflow2.0

很多帖子是在anaconda里create一个新的环境,我觉得没必要,在base环境下一样的可以安装使用。
首先打开cmd,输入:

activate base

激活base环境,此时在C盘前面会出现一个(base),然后再输入:

pip install -U tensorflow-gpu==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果安装不成功可能是网不好,建议切换网络多安装几次(亲身体会),到这一步一般不会出错!

第六步:测试

在base环境下输入python或者ipython,这一步是打开一个编辑器,然后输入

 import  tensorflow as tf 

再按回车,没报错,说明十有八九安装成功,
然后再输入

  tf.test.is_gpu_available() 

再按回车,如果结果返回Ture,说明已经成功安装tensorflow2.0 gpu版本。
具体结果显示为如下图:
在这里插入图片描述
在这里插入图片描述
在连接里有word的具体操作文档,可下载做参考。
谢谢观看!

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值