1._input_data.py
import numpy as np
import tensorflow as tf
import os
import cv2
import matplotlib.pyplot as plt
import os
from PIL import Image
def get_files(file_dir):
cats = []
dogs = []
cats_label = []
dogs_label = []
img_dirs = os.listdir(file_dir)#读取文件名下所有!目录名(列表形式)
for img_name in img_dirs:# cat.0.jpg
name = img_name.split(".")# ['cat', '0', 'jpg']
if name[0] == "cat":
cats.append(file_dir + img_name)
cats_label.append(0)
else:
if name[0] == "dog":
dogs.append(file_dir + img_name)
dogs_label.append(1)
img_list = np.hstack((cats, dogs))
label_list = np.hstack((cats_label, dogs_label))
temp = np.array([img_list, label_list]) # 列表转化为矩阵
temp = temp.transpose() # transpose的操作对象是矩阵,转置一下
np.random.shuffle(temp) # 打乱顺序
image_list = list(temp[:, 0])
label_list = list(temp[:, 1])
label_list = [int(i) for i in label_list]
train_image_list = list(image_list[0:int(len(image_list) * 0.7)])
train_label_list = list(label_list[0:int(len(image_list) * 0.7)])
valid_image_list = list(image_list[int(len(image_list) * 0.7):len(image_list)])
valid_label_list = list(label_list[int(len(image_list) * 0.7):len(image_list)])
return train_image_list,train_label_list,valid_image_list,valid_label_list
#############################################
def get_batch(image, label, image_w, image_h, batch_size, capacity):#capacity: 队列中 最多容纳图片的个数
input_queue = tf.train.slice_input_producer([image, label])#tf.train.slice_input_producer是一个tensor生成器,作用是
# 按照设定,每次从一个tensor列表中按顺序或者随机抽取出一个tensor放入文件名队列。
label = input_queue[1]
img_contents = tf.read_file(input_queue[0])#一维
image = tf.image.decode_jpeg(img_contents, channels=3)#解码成三维矩阵
image = tf.image.resize_image_with_crop_or_pad(image, image_w, image_h)
image = tf.cast(image, tf.float32)
image = tf.image.per_image_standardization(image)
# 生成批次 num_threads 有多少个线程根据电脑配置设置
image_batch, label_batch = tf.train.batch([image, label], batch_size=batch_size, num_threads=64, capacity=capacity)
return image_batch, label_batch #shape = (32, 208, 208, 3) (32,)
# img_list, label_list = get_files("F:/mytest/2.cat_dog/train/train/")
# image_batch, label_batch = get_batch(img_list, label_list,208,208,32,256)
# print(image_batch.shape)
# print(label_batch.shape)
2._model.py
import tensorflow as tf
def inference(image, batch_size, n_classes):
with tf.variable_scope("conv1") as scope:#课本108,variable_scope控制get_variable是获取(reuse=True)还是创建变量
weights = tf.get_variable("weights", shape=[3,3,3,16], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable("biases", shape=[16], dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(image, weights, strides=[1,1,1,1], padding="SAME")
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
with tf.variable_scope("pooling1_lrn") as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1], strides=[1,2,2,1], padding="SAME", name="pooling1")
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,beta=0.75, name="norm1")#局部响应归一化??????
with tf.variable_scope("conv2") as scope:
weights = tf.get_variable("weights", shape=[3,3,16,16], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable("biases", shape=[16], dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1], padding="SAME")
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
with tf.variable_scope("pooling2_lrn") as scope:
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,beta=0.75, name="norm2")
pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,2,2,1], padding="SAME", name="pooling2")
pool2_shape = pool2.get_shape().as_list()
nodes = pool2_shape[1] * pool2_shape[2] * pool2_shape[3]
dense = tf.reshape(pool2, [batch_size, nodes])
with tf.variable_scope("local3") as scope:
weights = tf.get_variable("weights", shape=[nodes, 128], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases", shape=[128], dtype=tf.float32, initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(dense, weights) + biases, name=scope.name)
with tf.variable_scope("local4") as scope:
weights = tf.get_variable("weights", shape=[128, 128], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases", shape=[128], dtype=tf.float32, initializer=tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases,name="local4")
with tf.variable_scope("softmax_linear") as scope:
weights = tf.get_variable("weights", shape=[128, n_classes], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases", shape=[n_classes], dtype=tf.float32, initializer=tf.constant_initializer(0.1))
softmax_linear = tf.matmul(local4, weights) + biases
return softmax_linear
"""
top_1_op取样本的最大预测概率的索引与实际标签对比,top_2_op取样本的最大和仅次最大的两个预测概率与实际标签对比,
如果实际标签在其中则为True,否则为False。
3.train.py
import tensorflow as tf
import numpy as np
import os
import _input_data
import _model
N_CLASSES = 2
IMG_W = 208
IMG_H = 208
BATCH_SIZE = 32
CAPACITY = 256
STEP = 150 #训练步数应当大于10000
LEARNING_RATE = 0.0001
train_dir = "E:/mytest/2.cat_dog/train/train/"
log_train_dir = "E:/mytest/2.cat_dog/train_savenet/"
train_image_list, train_label_list,valid_image_list, valid_label_list = _input_data.get_files(train_dir)
X_train,Y_train = _input_data.get_batch(train_image_list, train_label_list, IMG_W,IMG_H,BATCH_SIZE,CAPACITY)
X_valid,Y_valid = _input_data.get_batch(valid_image_list, valid_label_list, IMG_W,IMG_H,BATCH_SIZE,CAPACITY)
x = tf.placeholder(tf.float32, shape=[None, 208,208,3])
y_ = tf.placeholder(tf.int64, shape=[None, ])
out = _model.inference(x,BATCH_SIZE, N_CLASSES )
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits= out, labels= y_, name="entropy_per_example")
loss = tf.reduce_mean(cross_entropy)
global_step = tf.Variable(0, name="global_step", trainable=False) # 定义训练的轮数,为不可训练的参数
train_op = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(loss, global_step=global_step)
correct = tf.equal(tf.argmax(out, 1), y_)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float16))
out1 = tf.nn.softmax(out)
correct1 = tf.equal(tf.argmax(out1, 1), y_)
accuracy1 = tf.reduce_mean(tf.cast(correct1, tf.float16))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Coordinator 和 start_queue_runners 监控 queue 的状态,不停的入队出队
coord = tf.train.Coordinator()#https://blog.youkuaiyun.com/weixin_42052460/article/details/80714539
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
for step in np.arange(STEP):
if coord.should_stop():
break
img_train,label_train = sess.run([X_train,Y_train])#注意:1)feed喂的不可以是张量。2)接收的参数名和run()里面的参数名不要一样
_, tra_loss, tra_acc = sess.run([train_op, loss, accuracy],
feed_dict={x: img_train, y_: label_train})
if step % 50 == 0:#%.2f表示输出浮点数并保留两位小数。%%表示直接输出一个%
print("step %d, train loss = %.2f, train accuracy = %.2f%%" %(step, tra_loss, tra_acc*100.0))
if step % 2000 == 0 or (step+1) ==STEP:
# 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
checkpoint_path = os.path.join(log_train_dir, "model.ckpt")
saver.save(sess, checkpoint_path, global_step=step)
img_valid, label_valid = sess.run([X_valid, Y_valid])
valid_accuracy = sess.run(accuracy1, feed_dict={x: img_valid, y_: label_valid})
# out2 = sess.run(out1, feed_dict = {x: img_valid})
# out3 = sess.run(tf.argmax(out2, 1))
# print(out2)
# print(out3)
# correct2 = sess.run(correct1, feed_dict={x: img_valid, y_: label_valid})
# print(correct2)
print(" valid accuracy %g" % valid_accuracy)
except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
4.test.py