一.7 操作系统管理硬件

        让我们回到hello程序的例子。当shell加载和运行hello程序时,以及hello程序输出自己的消息时,shell和hello程序都没有直接访问键盘、显示器、磁盘或者主存。取而代之的是,它们依靠操作系统提供的服务。我们可以把操作系统看作是应用程序和硬件之间插入的一层软件,如图1-10所示。所有应用程序对硬件的操作尝试都必须通过操作系统。

        操作系统有两个基本功能:(1)防止硬件被失控的应用程序滥用;(2)向应用程序提供简单一致的机制来控制复杂而又通常大不相同的低级硬件设备。操作系统通过几个基本的抽象概念(进程、虚拟内存和文件)来实现这两个功能。如图1-11所示,文件是 I/O设备的抽象表示,虚拟内存是对主存和磁盘I/O设备的抽象表示,进程则是对处理器、主存和I/O设备的抽象表示。我们将一次讨论每种抽象表示。

旁注:Unix、Posix和标准Unix规范

        20世纪60年代是大型、复杂操作系统盛行的年代,比如IBM的OS/360和Honeywell的Multics系统。OS/360是历史上最成功的软件项目之一。而Multics虽然持续存在了多年,却从来没有被广泛应用过。贝尔实验室曾经是Multics项目的最初参与者,但是因为考虑到该项目的复杂性和缺乏进展而于1969年退出。鉴于Mutics项目不愉快的经理,一群贝尔实验室的研究人员——Ken Thompson、Dennis Ritchie、Doug Mcllroy和Joe Ossanna,只不过在一个更小、更简单的程序包里实现。1970年,Brian Kernighan给新系统命名为Unix,这也是一个双关语,暗指“Multics”的复杂性。1973年用C重新编写其内核,1974年,Unix开始正式对外发布。

        贝尔实验室以慷慨的条件向学校提供源代码,所以Unix在大专院校里获得了很多支持并得以持续发展。最有影响的工作发生在20世纪70年代晚期到80年代早期,在美国加州大学伯克利分校,研究人员在一系列发布版本中增加了虚拟内存和Internet协议,称为Unix4.xBSD(Berkeley Software Distribution)。与此同时,贝尔实验室也在发布自己的版本,称为System V Unix。其他厂商的版本,比如Sun Microsystems的Solaris系统,则是从这些原始的BSD和System V版本中衍生而来。

        20世纪80年代中期,Unix厂商试图通过加入新的、往往不兼容的特性来使它们的程序与众不同,麻烦也就随之而来了。为了阻止这种趋势,IEEE(电气和电子工程师协会)开始努力标准化Unix的开发,后来由Richard Stallman命名为“Posix”,结果就得到一系列的标准,称作Posix标准。这套标准涵盖了很多方面,比如Unix系统调用的C语言接口、shell程序和工具、线程及网络编程。最近,一个称为“标准Unix规范”的独立标准化工作已经与Posix一起创建了统一的Unix系统标准。这些标准化工作的结果是Unix版本之间的差异已经基本消失。

一.7.1  进程 

        像hello这样的程序在现代系统上运行时,操作系统会提供一种假象,就好像系统上只有这个程序在运行。程序员看上去是独占地使用处理器、主存和I/O设备。处理器看上去就像在不间断地一条接一条地执行程序中的指令,即该程序的代码和数据是系统内存中唯一的对象。这些假象是通过进程的概念来实现的,进程是计算机科学中最重要和最成功的概念之一。

        进程是操作系统对一个正在运行的程序的抽象。在一个系统上可以同时运行多个进程,而每个进程都好像在独占地使用硬件。而并发运行,则是说一个进程的指令和另一个进程的指令是交错执行的。再大多数系统中,需要运行的进程数是多于可以运行它们的CPU个数的。传统系统在一个时刻只能执行一个程序,而先进的多核处理器同时能够执行多个程序。无论是在单核还是多核系统中,一个CPU看上去都像是在并发地执行多个进程,这是通过处理器在进程间切换来实现的。操作系统实现这种交错执行的机制称为上下文切换。为了简化讨论,我们只考虑包含一个CPU的单处理器系统的情况。我们将会在一.9.2节中讨论多处理器系统。

        操作系统保持跟踪进程运行所需的所有状态信息。这种状态,也就是上下文,包括许多信息,比如PC和寄存器文件的当前值,以及主存的内容。在任何一个时刻,单处理器系统都只能执行一个进程的代码。当操作系统决定要把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文、恢复新进程的上下文,然后将控制权传递到新进程。新进程就会从它上次停止的地方开始。图1-12展示了实例hello程序运行场景的基本理念。

         示例场景中有两个并发的进程:shell进程和hello进程。最开始,只有shell进程在运行,即等待命令行上的输入。当我们让它运行hello程序时,shell通过调用一个专门的函数,即系统调用,来执行我们的请求,系统调用会将控制权传递给操作系统。操作系统保存shell进程的上下文,创建一个新的hello进程及其上下文,然后将控制权传给新的hello进程。hello进程终止后,操作系统恢复shell进程及其上下文,然后将控制权传给新的hello进程。hello进程终止后,操作系统恢复shell进程的上下文,并将控制权传回给它,shell进程会持续等待下一个命令行输入。

        如图1-12所示,从一个进程到另一个进程的转换是由操作系统的内核(kernel)管理的。内核是操作系统代码常驻主存部分。当应用程序需要操作系统的某些操作时,比如读写文件,它就执行一条特殊的系统调用(system call)指令,将控制权传递给内核。然后内核执行被请求的操作并返回应用程序。注意,内核不是一个独立的进程。相反,它是系统管理全部进程所用代码和数据结构的集合。

        实现进程这个抽象概念需要低级硬件和操作系统软件之间的紧密合作。我们将在第八章中揭示这项工作的原理,以及应用程序时如何创建和控制他们的进程的。

一.7.2  线程

        尽管通常我们认为一个进程只有单一的控制流,但是在现代系统中,一个进程实际上可以由多个称为线程的执行单元组成,每个线程都运行在进程的上下文中,并共享同样的代码和全局数据。由于网络服务器对并行处理的需求,线程成为越来越重要的编程模型,因为多线程之间比多进程之间更容易共享数据,也因为线程一般来说都比进程更高效。当有多处理器可用的时候,多线程也是一种使得程序运行更快的方法,我们将在一.9.2节中讨论这个问题。在第十二章中,你将学习并发的基本概念,包括如何写线程化的程序。

一.7.3  虚拟内存

        虚拟内存是一个抽象概念,它为每个进程提供一个假象,即每个进程都在独占地使用主存。每个进程看到的内存都是一致的,称为虚拟地址空间。图1-13所示的是Linux进程的虚拟地址空间(其他Unix系统的设计也与此类似)。在Linux中,地址空间最上面的区域是保留给操作系统中的代码和数据的,这对所有进程来说都是一样的。地址空间的底部数据存放用户进程定义的代码和数据。请注意,图中的地址是从下往上增大的。

        每个进程看到的虚拟地址空间由大量准确定义的区构成,每个区都有专门的功能。 在本书后续章节你将学到更多有关这些区的知识,但是先简单了解每一个区是非常有益的。我们从最低的地址开始,逐步向上介绍。

  •  程序代码和数据。对所有的进程来说,代码是从同一固定地址开始,紧接着的是和C全局变量相对应的数据位置。代码和数据区是直接按照可执行目标文件的内容初始化的,在示例中就是可执行文件hello。在第七章我们研究链接和加载时,你会学习更多有关地址空间的内容。
  • 堆。代码和数据区紧随着的是运行时堆。代码和数据区在进程一开始运行时就被指定了大小,与此不同,当调用像malloc和free这样的C标准库函数时,堆可以在运行时动态地扩展和收缩。在第九章学习管理虚拟内存时,我们将更详细地研究堆。
  • 共享库。大约在地址空间的中间部分是一块用来存放像C标准库和数学库这样的共享库的代码和数据的区域。共享库的概念非常强大,也相当难懂。在第七章介绍动态链接时,将学习共享库是如何工作的。
  • 栈。位于用户虚拟空间顶部的是用户栈,编译器用它来实现函数调用。和堆一样,用户栈在程序执行期间可以动态地扩展和收缩。特别的,每次我们调用一个函数时,栈就会增长;从一个函数返回时,栈就会收缩。在第三章中将学习编译器是如何使用栈的。
  • 内核虚拟内存。地址空间顶部的区域是为内核保留的。不允许应用程序读写这个区域的内容或者直接调用内核代码定义的函数。相反,他们必须调用内核来执行这些操作。

        虚拟内存的运作需要硬件和操作系统软件之间精密复杂的交互,包括对处理器生成的每个地址的硬件翻译。基本思想是把一个进程虚拟内存的内容存储在磁盘上,然后用主存作为磁盘的高速缓存。第九章将解释它如何工作,以及为什么对现代系统的运行如此重要。

一.7.4  文件

        文件就是字节序列,仅此而已。每个I/O设备,包括磁盘、键盘、显示器,甚至网络,都可以看成是文件。系统中的所有输入输出都是通过使用一小组成为Unix I/O的系统函数调用读写文件来实现的。

        文件这个简单而精致的概念是非常强大的,因为它向应用程序提供了一个统一的视图,来看待系统中可能含有的所有各式各样的I/O设备。例如,处理磁盘文件内容的应用程序员可以非常幸福,因为他们无须了解具体的磁盘技术。进一步说,同一个程序可以在使用不同磁盘技术的不同系统上运行。你将在第十章中学习Unix I/O。

旁注:Linux项目

        1991年8月,芬兰研究生Linus Torvalds谨慎地发布了一个新的类Unix的操作系统内核,内容如下。

        来自:torvalds@klaava.Helsinki.FI(Linus Benedict Torvalds)

        新闻组:comp.os.minix

        主题:在minix中你最想看到什么?

        摘要:关于我的新操作系统的小调查

        时间:1991年8月25日20:57:08 GMT

        每个使用minix的朋友,你们好。

        我正在做一个(免费的)用在386(486)AT上的操作系统(只是业余爱好,它不会像GNU那样庞大和专业)。这个想法自4月份就开始酝酿,现在快要完成了。我希望得到各位对minix的任何反馈意见,因为我的操作系统在某些方面与它相类似(其中包括相同的文件系统的物理设计(因为某些实际的原因))。

        我现在已经移植了bash(1.08)和gcc(1.40),并且看上去能运行。这意味着我需要几个月的时间来让它变得更实用一些,并且,我想要知道大多数人想要什么特性。欢迎任何建议,但是我无法保证我能实现它们。

        Linus(torvalds@kruuna.helsinki.fi)

        就像Torvalds所说的,他创建Linux的起点是Minix,由Andrew S. Tanenbaum出于教育目的开发的一个操作系统。

        接下来,如他们所说,这就成了历时。Linux住建发展成为一个技术和文化现象。通过和GNU项目的力量结合,Linux发展成了一个完整的、符合Posix标准的Unix操作系统的版本,包括内核和所有支撑的基础设施。从手持设备到大型计算机,Linux范围如此广泛的计算机上得到了应用。IBM的一个工作组甚至把Linux移植到了一块腕表中!

写在后:当时的大佬们认为将Linux系统移植到腕表中是一种很超前的思想和技术,而现在(2024年7月9日)来看,绝大部分终端好像都离不开 Linux内核。很明显这是科技发展的必然结果。畅想一下:某一天,生物体会不会植入某些芯片,真正就变成了钢铁侠了呢,也需就在不久的将来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值