Python Pandas 处理空数据/缺失数据 dropna fillna,增加/更新列 assign,分层 qcut,向量函数

数据准备

import pandas as pd
import numpy as np
# 假设有 5 个人,分别参加了 4 门课程,获得了对应的分数
# 同时这个 5 个人分别负责的项目个数 在 'Project_num' 列中显示
data = {
   'name' : pd.Series(['Alice', 'Bob', 'Cathy', 'Dany', 'Ella', 'Ford', 'Gary', 'Ham', 'Ico', 'Jack']),
        'Math_A' : pd.Series([1.1, 2.2, 3.3, 4.4, 5, 3.2, 2.4, 1.5, 4.3]),
        'English_A' : pd.Series([3, 2.6, 2, 1.7, 3, 3.3, 4.4, 5, 3.2, 2.4]),
        'Math_B' : pd.Series([1.7, 2.5, 3.6, 2.4, 5, 2.2, 3.3, 4.4, 1.5, 4.3]),
        'English_B' : pd.Series([5, 2.6, 2.4, 1.3, 3, 3.6, 2.4, 5, 2.2]),
        'Project_num' : pd.Series([2, 3, 0, 1, 7, 2, 1, 5, 3, 4]),
        'Sex' : pd.Series(['F', 'M', 'M', 'F', 'M', 'F', 'M', 'M', 'F', 'M'])
     }
df = pd.DataFrame(data)
print(df)

运行结果:

    name  Math_A  English_A  Math_B  English_B  Project_num Sex
0  Alice     1.1        3.0     1.7        5.0            2   F
1    Bob     2.2        2.6     2.5        2.6            3   M
2  Cathy     3.3        2.0     3.6        2.4            0   M
3   Dany     4.4        1.7     2.4        1.3            1   F
4   Ella     5.0        3.0     5.0        3.0            7   M
5   Ford     3.2        3.3     2.2        3.6            2   F
6   Gary     2.4        4.4     3.3        2.4            1   M
7    Ham     1.5        5.0     4.4        5.0            5   M
8    Ico     4.3        3.2     1.5        2.2            3   F
9   Jack     NaN        2.4     4.3        NaN            4   M

一、处理缺失数据

1.1 去除有缺失数据的行 dropna

print(df.dropna())
# 由于 Jack 的数据有 缺失,所以删除这一行
print('\n')

运行结果:

    name  Math_A  English_A  Math_B  English_B  Project_num Sex
0  Alice     1.1        3.0     1.7        5.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值